40 resultados para Statistical physics.
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The nearest-neighbor spacing distributions proposed by four models, namely, the Berry-Robnik, Caurier-Grammaticos-Ramani, Lenz-Haake, and the deformed Gaussian orthogonal ensemble, as well as the ansatz by Brody, are applied to the transition between chaos and order that occurs in the isotropic quartic oscillator. The advantages and disadvantages of these five descriptions are discussed. In addition, the results of a simple extension of the expression for the Dyson-Mehta statistic Δ3 are compared with those of a more popular one, usually associated with the Berry-Robnik formalism. ©1999 The American Physical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This is the first paper in a two-part series devoted to studying the Hausdorff dimension of invariant sets of non-uniformly hyperbolic, non-conformal maps. Here we consider a general abstract model, that we call piecewise smooth maps with holes. We show that the Hausdorff dimension of the repeller is strictly less than the dimension of the ambient manifold. Our approach also provides information on escape rates and dynamical dimension of the repeller.
Resumo:
By considering the long-wavelength limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple-scale method in obtaining uniform perturbative series.
Resumo:
We present a solitary solution of the three-wave nonlinear partial differential equation (PDE) model - governing resonant space-time stimulated Brillouin or Raman backscattering - in the presence of a cw pump and dissipative material and Stokes waves. The study is motivated by pulse formation in optical fiber experiments. As a result of the instability any initial bounded Stokes signal is amplified and evolves to a subluminous backscattered Stokes pulse whose shape and velocity are uniquely determined by the damping coefficients and the cw-pump level. This asymptotically stable solitary three-wave structure is an attractor for any initial conditions in a compact support, in contrast to the known superluminous dissipative soliton solution which calls for an unbounded support. The linear asymptotic theory based on the Kolmogorov-Petrovskii-Piskunov assertion allows us to determine analytically the wave-front slope and the subluminous velocity, which are in remarkable agreement with the numerical computation of the nonlinear PDE model when the dynamics attains the asymptotic steady regime. © 1997 The American Physical Society.
Resumo:
We consider the two nonconcentric circles billiard, with the inner circle as a refringent medium, in order to study the classical dynamics of a light ray. The eccentricity controls the chaotic sea intensity and the refraction index acts on the integrable portion of the phase space, prompting the appearance and overlapping of isochrone resonances. Numerical results are presented and discussed.
Resumo:
A harmonic oscillator isospectral potential obtained by supersymmetric algebra applied to quantum mechanics is suggested to simulate DNA H bonds. Thermic denaturation is studied with this potential.
Resumo:
We show in this report that the perturbed Burgers equation ut = 2uux + uxx + ε(3 α1u2ux + 3 α2uuxx + 3 α3u2 x + α4uxxx) is equivalent, through a near-identity transformation and up to O(ε), to a linearizable equation if the condition 3 α1 - 3 α3 - 3/2α2 + 3/2α4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.
Resumo:
The modal and nonmodal linear properties of the Hasegawa-Wakatani system are examined. This linear model for plasma drift waves is nonnormal in the sense of not having a complete set of orthogonal eigenvectors. A consequence of nonnormality is that finite-time nonmodal growth rates can be larger than modal growth rates. In this system, the nonmodal time-dependent behavior depends strongly on the adiabatic parameter and the time scale of interest. For small values of the adiabatic parameter and short time scales, the nonmodal growth rates, wave number, and phase shifts (between the density and potential fluctuations) are time dependent and differ from those obtained by normal mode analysis. On a given time scale, when the adiabatic parameter is less than a critical value, the drift waves are dominated by nonmodal effects while for values of the adiabatic parameter greater than the critical value, the behavior is that given by normal mode analysis. The critical adiabatic parameter decreases with time and modal behavior eventually dominates. The nonmodal linear properties of the Hasegawa-Wakatani system may help to explain features of the full system previously attributed to nonlinearity.
Resumo:
We consider the Korteweg-de Vries equation with a perturbation arising naturally in many physical situations. Although being asymptotically integrable, we show that the corresponding perturbed solitons do not have the usual scattering properties. Specifically, we show that there is a solution, correct up to O(ε), where ε is the perturbative parameter, consisting, at t→ -∞ of two superposed deformed solitons characterized by wave numbers k1 and k2 that give rise, for t→ +∞, to the same but phase-shifted superposed solitons plus a coupling term depending on k1, and k2. We also find the condition on the original equation for which this coupling vanishes.
Resumo:
We present analytical and numerical results for the specific heat and susceptibility amplitude ratios in parallel plate geometries. The results are derived using field-theoretic techniques suitable to describe the system in the bulk limit, i.e., (L/ξ±)≫ 1, where L is the distance between the plates and ξ± is the correlation length above (+) and below (-) the bulk critical temperature. Advantages and drawbacks of our method are discussed in the light of other approaches previously reported in the literature.
Resumo:
In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.
Resumo:
In this paper we study the interplay between short- and long-space scales in the context of conservative dispersive systems. We consider model systems in (1 + 1) dimensions that admit both long- and short-wavelength solutions in the linear regime. A nonlinear analysis of these systems is constructed, making use of multiscale expansions. We show that the equations governing the lowest order involve only short-wave properties and that the long-wave effects to leading order are determined by a secularity elimination procedure. © 1999 The American Physical Society.
Improved numerical approach for the time-independent Gross-Pitaevskii nonlinear Schrödinger equation
Resumo:
In the present work, we improve a numerical method, developed to solve the Gross-Pitaevkii nonlinear Schrödinger equation. A particular scaling is used in the equation, which permits us to evaluate the wave-function normalization after the numerical solution. We have a two-point boundary value problem, where the second point is taken at infinity. The differential equation is solved using the shooting method and Runge-Kutta integration method, requiring that the asymptotic constants, for the function and its derivative, be equal for large distances. In order to obtain fast convergence, the secant method is used. © 1999 The American Physical Society.