Linearizability of the perturbed Burgers equation


Autoria(s): Kraenkel, Roberto André; Pereira, J. G.; De Rey Neto, E. C.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/08/1998

Resumo

We show in this report that the perturbed Burgers equation ut = 2uux + uxx + ε(3 α1u2ux + 3 α2uuxx + 3 α3u2 x + α4uxxx) is equivalent, through a near-identity transformation and up to O(ε), to a linearizable equation if the condition 3 α1 - 3 α3 - 3/2α2 + 3/2α4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.

Formato

2526-2530

Identificador

http://dx.doi.org/10.1103/PhysRevE.58.2526

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, v. 58, n. 2 SUPPL. B, p. 2526-2530, 1998.

1063-651X

http://hdl.handle.net/11449/65490

10.1103/PhysRevE.58.2526

WOS:000075381500065

2-s2.0-0002207118

2-s2.0-0002207118.pdf

Idioma(s)

eng

Relação

Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics

Direitos

openAccess

Tipo

info:eu-repo/semantics/article