34 resultados para Piperidine
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
LASSBio-767 [(-)-3-O-acetyl-spectaline] and LASSBio-822 [(-)-3-O-tert-Boc-spectaline] were recently described as cholinesterase inhibitors derived from the natural piperidine alkaloid (-)-spectaline, obtained from the flowers of Senna spectabilis (Fabaccae). We investigated their mechanism of inhibition of acetylcholinesterase and their efficacy in reversing scopolamine-induced amnesia. Competition assays with the substrate acetylthiocholine showed a concentration-dependent reduction in rat brain cholinesterase V-max without changes in apparent K-m. The kinetic data for LASSBio-767 and LASSBio-822 were best fit by a model of simple linear noncompetitive inhibition with K-i of 6.1 mu M and 7.5 mu M, respectively. A dilution assay showed a fast and complete reversal of inhibition, independent of incubation time. Simulated docking of the compounds into the catalytic gorge of Torpedo acetylcholinesterase showed interactions with the peripheral anionic site, but not with the catalytic triad. Anti-amnestic effects in mice were assessed in a step-down passive avoidance test and in the Morris water maze 30 min after injection of scopolamine (1 mg/kg i.p.). Saline, LASSBio-767, or LASSBio-822 was administered 15 min before scopolamine. Both compounds reversed the scopolamine-induced reduction in step-down latency at 0.1 mg/kg i.p. LASSBio-767 reversed scopolamine-induced changes in water maze escape latency at 1 mg/kg i.p. or p.o., while its cholinergic side effects were absent or mild up to 30 mg/kg i.p. (LD50 above 100 mg/kg i.p.). Thus, the (-)-spectaline derivatives are potent cholinergic agents in vivo, with a unique profile combining noncompetitive cholinesterase inhibition and CNS selectivity, with few peripheral side effects. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In early studies, we have reported the antinociceptive profile of (-)-spectaline, a piperidine alkaloid from Cassia spectabilis. The present study describes the synthesis, the antinociceptive and anti-inflammatory activities of a series of 2,3,6-trialkyl-piperidine alkaloids: the natural (-)-3-O-acetyl-spectaline (LASSBio-755) and ten semi-synthetic spectaline derivatives. Structure-activity relationship (SARs) studies were performed. The structures of all synthesized derivatives were confirmed by means of nuclear magnetic resonance. Compounds were evaluated for their analgesic (acetic acid-induced mouse abdominal constrictions, hot-plate test, formalin-induced pain test) and some of them for the anti-inflammatory activities (carrageenan-induced rat paw edema test). The pharmacological results showed that several of the new compounds given orally at a dose of 100 mu mol/kg significantly inhibited the acetic acid-induced abdominal constrictions, but they were less active than (-)-spectaline. LASSBio-755 and LASSBio-776 were the most actives with 37% and 31.7% of inhibition. In the formalin-induced pain only LASSBio-776 was able to inhibit by 34.4% the paw licking response of the inflammatory phase, (-)-spectaline and LASSBio-755 did show any activity. In the carrageenan-induced rat paw edema, only (-)-spectaline exhibited an anti-inflammatory profile, showing an ED(50) value of 56.6 mu mol/kg. Our results suggest different mechanisms of action for the analgesic activity observed for LASSBio-776 (3-O-Bocspectaline), LASSBio-755 (3-O-acetyl-spectaline) and (-)-spectaline (LASSBio-754). The antinociceptive profile of some of the semi-synthetic spectaline derivatives extends our research concerning the chemical and pharmacological optimization of isolated natural products in the search of new drug candidates from brazilian biodiversity.
Resumo:
Phytochernical work in the search for bioactive metabolites from the methanolic extract of Senna spectabilis green fruits led to the isolation of a new piperidine alkaloid, (+)-3-O-feruloylcassine (1), in addition to the known (-)-spectaline (2) and (-)-3-O-acetylspectaline (3). The isolates were submitted to in vitro evaluation of lipoperoxidation (LPO) and cyclooxygenase enzymes (COX-1 and -2) inhibitory properties and showed moderate antioxidant activities (40-70%) at 100 ppm when compared to commercial standards BHT and vitamin E and moderate inhibition of COX-1 (ca. 40%) and marginal inhibition of COX-2 enzymes (< 10%) at 100 ppm when compared to nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin, rofecoxib, and celecoxib, respectively.
Resumo:
The flowers of Cassia spectabilis yielded three new piperidine alkaloids, (-)-3-O-acetylspectaline (1), (-)-7-hydroxyspectaline (2), and iso-6-spectaline (3), together with the known (-)-spectaline (4). The green fruits of this plant were also investigated, resulting in the isolation of 1 and 4. Their structures were elucidated using a combination of multidimensional NMR and MS techniques, and relative stereochemistries were established by NOESY correlations and analysis of coupling constants. The DNA-damaging activity of these compounds was evaluated using a mutant yeast, Saccharomyces cerevisiae, assay.
Resumo:
Five new piperidine alkaloids were designed from natural (-)-3-O-acetyl-spectaline and (-)-spectaline that were obtained from the flowers of Senna spectabilis (sin. Cassia spectabilis, Leguminosae). Two semi-synthetic analogues (7 and 9) inhibited rat brain acetylcholinesterase, showing IC50 of 7.32 and 15.1 mu M, and were 21 and 9.5 times less potent against rat brain butyrylcholinesterase, respectively. Compound 9 (1 mg/kg, ip) was fully efficacious in reverting scopolamine-induced amnesia in mice. The two active compounds (7 and 9) did not show overt toxic effects at the doses tested in vivo. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Four new piperidine alkaloids, leptophyllin A (4), 3-acetylleptophyllin A (5), leptophyllin B (8), and (-)-spectaline (1), and 3 known piperidine alkaloids, (-)-spectalinine (2), canavaline (3), and iso-6-canavaline (7), were isolated by a bioassay-guided fractionation of a leaf extract of Cassia leptophylla. The alkaloids 1 - 3 were active in a mechanism-based DNA-modifying yeast assay and 2 was moderately active in Vero monkey and Chinese hamster ovary cell cytotoxicity assays.
Resumo:
The antinociceptive activity of (-)-spectaline (1), a piperidine alkaloid isolated from Cassia leptophylla Vog. (Leguminosae), was investigated. We have also studied the acute oral toxicity of 1 in mice and it did not show any signals of toxicity in doses lower than 400 mumol/kg. The antinociceptive effect of 1 was evaluated on chemical (acetic acid, formalin and capsaicin) and thermal (hot plate and tail flick) pain models in mice, using classical standard drugs. Dipyrone ID50 = 14.68 mumol/kg (4.8 mg/kg), in-domethacin ID50 = 0.78 mumol/kg (0.28 mg/kg) and (-)-spectaline ID50 = 48.49 mumol/kg (15.75 mg/kg), all produced a significant inhibition of acetic acid-induced abdominal writhing in mice. (-)-Spectaline was inactive in the hyperalgesic model of formalin and did not show any central analgesic activity (hot plate and tail flick models). In the capsaicin-induced neurogenic pain model, (-)-spectaline presented an important inhibitory effect with an ID50 = 20.81 mug/paw and dipyrone ID50 = 19.89 mug/ paw. The ensemble of results permitted us to identify 1 as an antinociceptive compound. The mechanism underlying this antinociceptive effect of 1 remains unknown, but the results suggest that such an effect could be related to pathways associated to vanilloid receptor systems.
Resumo:
The fragmentation pattern of a homologous series of piperidine alkaloids isolated from S. spectabilis was investigated using electrospray ionization tandem mass spectrometry (ESI-MS/MS). The ESI-MS and ESI-MS/MS analyses of EtOH extracts and fractions from flowers and fruits of S. spectabilis allowed to elucidate the structures of four new compounds. The identification of these co-metabolites, based on the fragmentation patterns of previously isolated compounds, and further confirmed by accurate mass spectrometry defines this technique as a powerful tool to determine the metabolomic profile of species which has pharmacological importance. ©2005 Sociedade Brasileira de Química.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1 Nine synthetic amides similar to natural N-piperidine-3-(4,5-methylenedioxyphenyl)-2-(E)-propenainide and N-pyrrolidine-3-(4,5-methylenedyoxiphenyl)2-(E)-propenamide were synthesized and identified by their spectroscopic data.2 the toxicity of these synthetic amides to the Atta sexdens rubropilosa workers and the antifungal activity against Leticoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, were determined.3 Workers ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls for N-pyrrolidine-3(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N-benzyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.4 the completely inhibition (100%) of the fungal growth was observed with N-piperldine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N,N-diethyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at concentrations of 50 and 100 mu g/mL and N-pirrolidine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.5 the possibility of controlling these insects in the future using synthetic piperamides that can simultaneously target both organisms is discussed.
Resumo:
The mechanical and adhesives properties of epoxy formulations based on diglycidyl ether of bisphenol A cured with various aliphatic amines were evaluated in the glass state. Impact tests were used to determine the impact energy. The adhesive properties have been evaluated in terms single lap shear using steel adherends. Its durability in water at ambient temperature (24 degrees C) and at 80 degrees C has also been analyzed. The fracture mechanisms were determined by optical microscopy. It was observed a strong participation of the cohesive fracture mechanisms in all epoxy system studied. The 1-(2-aminoethyl)piperazine epoxy adhesive and piperidine epoxy adhesive presents the best adhesive strength and the largest impact energy. The durability in water causes less damage to piperidine epoxy networks. This behavior appears to be associated with the lower water uptake tendency of homopolymerised resins due to its lower hydroxyl group concentration. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)