30 resultados para Lyapunov function

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, sufficient conditions for the existence of switching laws for stabilizing switched TS fuzzy systems via a fuzzy Lyapunov function are proposed. The conditions are found by exploring properties of the membership functions and are formulated in terms of linear matrix inequalities (LMIs). Stabilizing switching conditions with bounds on the decay rate solution and H1 performance are also obtained. Numerical examples illustrate the effectiveness of the proposed design methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we consider a one-dimensional quasilinear parabolic equation and we prove that the lap number of any solution cannot increase through orbits as the time passes if the initial data is a continuous function. We deal with the lap number functional as a Lyapunov function, and apply lap number properties to reach an understanding on the asymptotic behavior of a particular problem. (c) 2006 Published by Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the fuzzy Lyapunov function approach is considered for stabilizing continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing a slack LMI variable into the problem formulation. The stability results are thus used in the state feedback design which is also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilizing conditions presented. © 2011 IFAC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, the fuzzy Lyapunov function approach is considered for stabilising continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing slack LMI variables into the problem formulation. The relaxation conditions given can also be used with a class of fuzzy Lyapunov functions which also depends on the membership function first-order time-derivative. The stability results are thus extended to systems with large number of rules under membership function order relations and used to design parallel-distributed compensation (PDC) fuzzy controllers which are also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilising conditions presented. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rossler system and synchronization of the hyperchaotic Rossler system. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of power system stability including the effects of a flexible alternating current transmission system (FACTS) is approached. First, the controlled series compensation is considered in the machine against infinite bar system and its effects are taken into account by means of construction of a Lyapunov function (LF). This simple system is helpful in order to understand the form the device affects dynamic and transient performance of the power system. After, the multimachine case is considered and it is shown that the single-machine results apply to multimachine systems. An energy-form Lyapunov function is derived for the power system including the FACTS device and it is used to analyse damping and synchronizing effects due to the FACTS device in single-machine as well as in multimachine power systems. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a new switched control design method for some classes of linear time-invariant systems with polytopic uncertainties. This method uses a quadratic Lyapunov function to design the feedback controller gains based on linear matrix inequalities (LMIs). The controller gain is chosen by a switching law that returns the smallest value of the time derivative of the Lyapunov function. The proposed methodology offers less conservative alternative than the well-known controller for uncertain systems with only one state feedback gain. The control design of a magnetic levitator illustrates the procedure. © 2013 Wallysonn A. de Souza et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)