41 resultados para CHELATE LIGANDS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Pós-graduação em Química - IQ
Resumo:
Three new mixed-chelate copper complexes with 3-aminoquinoxaline-2-carbonitrile N 1,N 4-dioxide derivatives and alanine as ligands were synthesized in solid state. The spectroscopic characterization (FTIR, EPR, UV-Vis) showed that copper coordinated through the amine and the N-oxide groups of the quinoxaline derivatives and the amine and carboxylate moieties from alanine forming a dimeric species. The tree complexes showed in vitro activity against M. tuberculosis H 37Rv (ATCC 27294) similar to that of ethambutol while they are inactive against E. coli and S. aureus.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The reaction of 2,6-diformylpyridine-bis(benzoylhydrazone) [dfpbbh] and 2,6-diformylpyridine-bis(4-phenylsemicarbazone) [dfpbpsc] with lanthanides salts yielded the new chelates complexes [Eu(dfpbpsc-H +) 2]NO 3 (1), [Dy(fbhmp) 2][Dy(dfpbbh-2H +) 2]·2EtOH·2H 2O (fbhmp = 2-formylbenzoylhydrazone-6-methoxide-pyridine; Ph = phenyl; Py = pyridine; Et = ethyl) and [Er 2(dfpbbh-2H +) 2(μ-NO 3)(H 2O) 2(OH)]·H 2O. X-ray diffraction analysis was employed for the structural characterization of the three chelate complexes. In the case of complex 1, optical, synthetic and computational methods were also exploited for ground state structure determinations and triplet energy level of the ligand and HOMO-LUMO calculations, as well as for a detailed study of its luminescence properties. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study describes the synthesis, IR, (1)H, and (13)C{(1)H} NMR spectroscopic as well the thermal characterization of the new palladium(II) pyrazolyl complexes [PdCl(2)(HmPz)(2)] 1, [PdBr(2)(HmPz)(2)] 2, [PdI(2)(HmPz)(2)] 3, [Pd(SCN)(2)(HmPz)(2)] 4 {HmPz = 4-methylpyrazole}. The residues of the thermal decomposition were identified as Pd(0) by X-ray powder diffraction. From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 1 > 2 > 4 a parts per thousand 3. The cytotoxic activities of the complexes and the ligand were investigated against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07) and compared to cisplatin under the same experimental conditions.
Resumo:
The pyrazole ligand 3,5-dimethyl-4-iodopyrazole (HdmIPz) has been used to obtain a series of palladium(II) complexes (1-4) of the type [PdX(2)(HdmIPz)(2)] {X = Cl(-) (1); Br(-) (2); I(-) (3); SCN(-) (4)}. All compounds have been isolated, purified, and characterized by means of elemental analysis, IR spectroscopy, (1)H and (13)C{(1)H}-NMR experiments, differential thermal analysis (DTA), and thermogravimetry (TG). The TG/DTA curves showed that the compounds released ligands in the temperature range 137-605 A degrees C, yielding metallic palladium as final residue. The complexes and the ligand together with cisplatin have been tested in vitro by MTT assay for their cytotoxicity against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07).
Resumo:
Synthesis, spectroscopic characterization and thermal analysis of the compounds [Pd-2(dmba)(2)(mu-NCO)(mu-2-qnS)] (1), [Pd-2(dmba)(2)(mu-NCO)(mu-8-qnS)] (2), [Pd(2-qnS)(2)] (3) and [Pd(8-qn(S))2] (4) (dmba=N,N-dimethylbenzylamine; 2-qnS=2-quinolinethiolate; 8-qnS=8-quinolinethiolate) are described. The thermal decomposition of these compounds occurs in four consecutive steps and the final decomposition products were identified as Pd(0) by X-ray powder diffraction. The thermal stability order of the complexes is 4 > 3 > 1 > 2.
Resumo:
Nanoparticles of octakis[3-(3-amino-1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) were tested as ligands, for transition-metal ions in aqueous solution with a special attention to sorption isotherms, ligand-metal interaction, and determination of metal ions in natural waters. The adsorption potential of the material ATZ-SSQ was compared with related [3(3-amino-1,2,4-triazole)propyl]silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from aqueous solution. The Langmuir model was used to simulate the sorption isotherms. The results suggest that the sorption of these metals on ATZ-SSQ and ATZ-SG occurs mainly by surface complexation. The equilibrium condition is reached at time lower than 3 min for ATZ-SSQ, while for ATZ-SG is only reached at time of 25 min. The maximum metal ion uptake values for ATZ-SSQ were higher than the corresponding values achieved with the ATZ-SG. In order to obtain more information on the ligand-metal interaction of the complexes on the surface of the ATZ-SSQ nanomaterial, ESR study with various degrees of copper loadings was carried out. The ATZ-SSQ was tested for the determination (in flow using a column technique) of the metal ions present in natural waters. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Noradrenaline and mixed alpha(2)-adrenoceptor/imidazoline-receptor ligands: effects on sodium intake
Resumo:
The effect of noradrenaline, and mixed ligands to alpha(2)-adrenoceptors (alpha(2)-AR) and imidazoline receptors (IR), injected intracerebroventricularly (i.c.v.), on sodium intake of sodium depleted rats, was tested against idazoxan, a mixed antagonist ligand to alpha(2)-AR and IR. The inhibition of sodium intake induced by noradrenaline (80 nmol) was completely reversed by idazoxan (160 and 320 nmol) injected i.c.v. The inhibition of sodium intake induced by mixed ligands to alpha(2)-AR and IR, UK14,304, guanabenz and moxonidine, was antagonized from 50 to 60% by idazoxan i.c.v. The results demonstrate that noradrenaline, a non-ligand for IR, acts on alpha(2)-AR inhibiting sodium intake. The possibility that either alpha(2)-AR or IR mediate the effect of mixed agonists on sodium intake remains an open question. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Purine nucleoside phosphorylase (PNP) is a key enzyme in the purine-salvage pathway, which allows cells to utilize preformed bases and nucleosides in order to synthesize nucleotides. PNP is specific for purine nucleosides in the beta-configuration and exhibits a strong preference for purines containing a 6-keto group and ribosyl-containing nucleosides relative to the corresponding analogues. PNP was crystallized in complex with ligands and data collection was performed using synchrotron radiation. This work reports the structure of human PNP in complex with guanosine (at 2.80 angstrom resolution), 3' deoxyguanosine (at 2.86 angstrom resolution) and 8-azaguanine (at 2.85 angstrom resolution). These structures were compared with the PNP-guanine, PNP-inosine and PNP-immucillin-H complexes solved previously.
Resumo:
Crystallographic screening has been used to identify new inhibitors for potential target for drug development. Here, we describe the application of the crystallographic screening to assess the structural basis of specificity of ligands against a protein target. The method is efficient and results in detailed crystallographic information. The utility of the method is demonstrated in the study of the structural basis for specificity of ligands for human purine nucleoside phosphorylase (PNP). Purine nucleoside phosphorylase catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. This enzyme is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This methodology may help in the future development of a new generation of PNP inhibitors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)