150 resultados para Discrete-continuous optimal control problems
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work presents the application of a multiobjective evolutionary algorithm (MOEA) for optimal power flow (OPF) solution. The OPF is modeled as a constrained nonlinear optimization problem, non-convex of large-scale, with continuous and discrete variables. The violated inequality constraints are treated as objective function of the problem. This strategy allows attending the physical and operational restrictions without compromise the quality of the found solutions. The developed MOEA is based on the theory of Pareto and employs a diversity-preserving mechanism to overcome the premature convergence of algorithm and local optimal solutions. Fuzzy set theory is employed to extract the best compromises of the Pareto set. Results for the IEEE-30, RTS-96 and IEEE-354 test systems are presents to validate the efficiency of proposed model and solution technique.
Resumo:
This paper is concerned with feedback vibration control of a lightly damped flexible structure that has a large number of well-separated modes. A single active electrical dynamic absorber is used to reduce a particular single vibration mode selectively or multiple modes simultaneously. The absorber is realized electrically by feeding back the structural acceleration at one position to a collocated piezoceramic patch actuator via a controller consisting of one or several second order lowpass filters. A simple analytical method is presented to design a modal control filter that is optimal in that it maximally flattens the mobility frequency response of the target mode, as well as robust in that it works within a prescribed maximum control spillover of 2 dB at all frequencies. Experiments are conducted with a free-free beam to demonstrate its ability to control any single mode optimally and robustly. It is also shown that an active absorber with multiple such filters can effectively control multiple modes simultaneously.
Resumo:
This work presents a numerical study of the tri-dimensional convection-diffusion equation by the control-volume-based on finite-element method using quadratic hexahedral elements. Considering that the equation governing this problem in its main variable may represent several properties, including temperature, turbulent kinetic energy, viscous dissipation rate of the turbulent kinetic energy, specific dissipation rate of the turbulent kinetic energy, or even the concentration of a contaminant in a given medium, among others, the wide applicability of this problem is thus evidenced. Three cases of temperature distributions will be studied specifically in this work, in addition to one case of pollutant dispersion upon analysis of the concentration of a contaminant in a fixed flow point. Some comparisons will be carried out against works found in the open literature, while others will be done according to each phenomenon characteristics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, we use a nonlinear control based on Optimal Linear Control. We used as mathematical model a Duffing equation to model a supporting structure for an unbalanced rotating machine with limited power (non-ideal motor). Numerical simulations are performed for a set control parameter (depending on the voltage of the motor, that is, in the static and dynamic characteristic of the motor) The interaction of the non-ideal excitation with the structure may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the system. Chaotic behavior is obtained for values of the parameters. Then, the proposed control strategy is applied in order to regulate the chaotic behavior, in order to obtain a periodic orbit and to decrease its amplitude. Both methodologies were used in complete agreement between them. The purpose of the paper is to give suggestions and recommendations to designers and engineers on how to drive this kind of system through resonance.
Resumo:
The main aspects of a discrete phase space formalism are presented and the discrete dynamical bracket, suitable for the description of time evolution in finite-dimensional spaces, is discussed. A set of operator bases is defined in such a way that the Weyl-Wigner formalism is shown to be obtained as a limiting case. In the same form, the Moyal bracket is shown to be the limiting case of the discrete dynamical bracket. The dynamics in quantum discrete phase spaces is shown not to be attained from discretization of the continuous case.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, a load transportation system in platforms or suspended by cables is considered. It is a monorail device and is modelled as an inverted pendulum built on a car driven by a DC motor. The governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the DC motor and the dynamical system, that is, we have a so-called non-ideal periodic problem. The problem is analysed and we also developed an optimal linear control design to stabilize the problem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Aging is characterized by a decline in the postural control performance, which is based on a coherent and stable coupling between sensory information and motor action. Therefore, changes in postural control in elderlies can be related to changes in this coupling. In addition, it has been observed that physical activity seems to improve postural control performance in elderlies. These improvements can be due to changes in the coupling between sensory information and motor action related to postural control. Objective: the purpose of this study was to verify the coupling between visual information and body sway in active and sedentary elderlies. Methods: Sixteen sedentary elderlies ( SE), 16 active elderlies ( AE) and 16 young adults ( YA) were asked to stand upright inside a moving room in two experimental conditions: ( 1) discrete movement and ( 2) continuous movement of the room. Results: In the continuous condition, the results showed that the coupling between the movement of the room and body sway was stronger and more stable for SE and AE compared to YA. In the discrete condition, SE showed larger body displacement compared to AE and YA. Conclusions: SE have more difficulty to discriminate and to integrate sensory information than AE and YA indicating that physical activity may improve sensory integration. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)