194 resultados para zeros of Hermite polynomials
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the q=2 state (Ising) and the q=3 state Potts model defined on phi(3) Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the q=3 state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper deals with the zeros of polynomials generated by a certain three term recurrence relation. The main objective is to find bounds, in terms of the coefficients of the recurrence relation, for the regions where the zeros are located. In most part, the zeros are explored through an Eigenvalue representation associated with a corresponding Hessenberg rnatrix. Applications to Szego polynomials, para-orthogonal polynomials and polynomials with non-zero complex coefficients are considered. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
SZEGO and PARA-ORTHOGONAL POLYNOMIALS on THE REAL LINE: ZEROS and CANONICAL SPECTRAL TRANSFORMATIONS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We study polynomials which satisfy the same recurrence relation as the Szego{double acute} polynomials, however, with the restriction that the (reflection) coefficients in the recurrence are larger than one in modulus. Para-orthogonal polynomials that follow from these Szego{double acute} polynomials are also considered. With positive values for the reflection coefficients, zeros of the Szego{double acute} polynomials, para-orthogonal polynomials and associated quadrature rules are also studied. Finally, again with positive values for the reflection coefficients, interlacing properties of the Szego{double acute} polynomials and polynomials arising from canonical spectral transformations are obtained. © 2012 American Mathematical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A positive measure psi defined on [a, b] such that its moments mu(n) = integral(b)(a)t(n) d psi(t) exist for n = 0, +/-1, +/-2. can be called a strong positive measure on [a, b] When 0 <= a < b <= infinity the sequence of polynomials {Q(n)} defined by integral(b)(a) t(-n+s) Q(n)(t) d psi(t) = 0, s = 0, ., n - 1, exist and they are referred here as L-orthogonal polynomials We look at the connection between two sequences of L-orthogonal polynomials {Q(n)((1))} and {Q(n)((0))} associated with two closely related strong positive measures and th defined on [a, b]. To be precise, the measures are related to each other by (t - kappa) d psi(1)(t) = gamma d psi(0)(t). where (t - kappa)/gamma is positive when t is an element of (n, 6). As applications of our study. numerical generation of new L-orthogonal polynomials and monotonicity properties of the zeros of a certain class of L-orthogonal polynomials are looked at. (C) 2010 IMACS Published by Elsevier B V All rights reserved
Resumo:
This paper deals with the classes S-3(omega, beta, b) of strong distribution functions defined on the interval [beta(2)/b, b], 0 < beta < b <= infinity, where 2 omega epsilon Z. The classification is such that the distribution function psi epsilon S-3(omega, beta, b) has a (reciprocal) symmetry, depending on omega, about the point beta. We consider properties of the L-orthogonal polynomials associated with psi epsilon S-3(omega, beta, b). Through linear combination of these polynomials we relate them to the L-orthogonal polynomials associated with some omega epsilon S-3(1/2, beta, b). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We investigate polynomials satisfying a three-term recurrence relation of the form B-n(x) = (x - beta(n))beta(n-1)(x) - alpha(n)xB(n-2)(x), with positive recurrence coefficients alpha(n+1),beta(n) (n = 1, 2,...). We show that the zeros are eigenvalues of a structured Hessenberg matrix and give the left and right eigenvectors of this matrix, from which we deduce Laurent orthogonality and the Gaussian quadrature formula. We analyse in more detail the case where alpha(n) --> alpha and beta(n) --> beta and show that the zeros of beta(n) are dense on an interval and that the support of the Laurent orthogonality measure is equal to this interval and a set which is at most denumerable with accumulation points (if any) at the endpoints of the interval. This result is the Laurent version of Blumenthal's theorem for orthogonal polynomials. (C) 2002 Elsevier B.V. (USA).
Resumo:
in this paper, we derive an explicit expression for the parameter sequences of a chain sequence in terms of the corresponding orthogonal polynomials and their associated polynomials. We use this to study the orthogonal polynomials K-n((lambda.,M,k)) associated with the probability measure dphi(lambda,M,k;x), which is the Gegenbauer measure of parameter lambda + 1 with two additional mass points at +/-k. When k = 1 we obtain information on the polynomials K-n((lambda.,M)) which are the symmetric Koornwinder polynomials. Monotonicity properties of the zeros of K-n((lambda,M,k)) in relation to M and k are also given. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We present an analysis of A0-stability of BDF methods and proof that zero-stable BDF methods are A0-stable using the Schur-Cohn criterion. With this result we have that zero-stable BDF methods are stiffly-stable. © 2008 American Institute of Physics.