109 resultados para Optimal Stochastic Control
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
This paper deals with a stochastic optimal control problem involving discrete-time jump Markov linear systems. The jumps or changes between the system operation modes evolve according to an underlying Markov chain. In the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (TN), or the occurrence of a crucial failure event (τΔ), after which the system is brought to a halt for maintenance. In addition, an intermediary mixed case for which T represents the minimum between TN and τΔ is also considered. These stopping times coincide with some of the jump times of the Markov state and the information available allows the reconfiguration of the control action at each jump time, in the form of a linear feedback gain. The solution for the linear quadratic problem with complete Markov state observation is presented. The solution is given in terms of recursions of a set of algebraic Riccati equations (ARE) or a coupled set of algebraic Riccati equation (CARE).
Resumo:
In this paper we present a weak maximum principle for optimal control problems involving mixed constraints and pointwise set control constraints. Notably such result holds for problems with possibly nonsmooth mixed constraints. Although the setback of such result resides on a convexity assumption on the extended velocity set, we show that if the number of mixed constraints is one, such convexity assumption may be removed when an interiority assumption holds. © 2008 IEEE.
Resumo:
We consider free time optimal control problems with pointwise set control constraints u(t) ∈ U(t). Here we derive necessary conditions of optimality for those problem where the set U(t) is defined by equality and inequality control constraints. The main ingredients of our analysis are a well known time transformation and recent results on necessary conditions for mixed state-control constraints. ©2010 IEEE.
Resumo:
Deterministic Optimal Reactive Power Dispatch problem has been extensively studied, such that the demand power and the availability of shunt reactive power compensators are known and fixed. Give this background, a two-stage stochastic optimization model is first formulated under the presumption that the load demand can be modeled as specified random parameters. A second stochastic chance-constrained model is presented considering uncertainty on the demand and the equivalent availability of shunt reactive power compensators. Simulations on six-bus and 30-bus test systems are used to illustrate the validity and essential features of the proposed models. This simulations shows that the proposed models can prevent to the power system operator about of the deficit of reactive power in the power system and suggest that shunt reactive sourses must be dispatched against the unavailability of any reactive source. © 2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An optimal control framework to support the management and control of resources in a wide range of problems arising in agriculture is discussed. Lessons extracted from past research on the weed control problem and a survey of a vast body of pertinent literature led to the specification of key requirements to be met by a suitable optimization framework. The proposed layered control structure—including planning, coordination, and execution layers—relies on a set of nested optimization processes of which an “infinite horizon” Model Predictive Control scheme plays a key role in planning and coordination. Some challenges and recent results on the Pontryagin Maximum Principle for infinite horizon optimal control are also discussed.
Resumo:
Some problems of Calculus of Variations do not have solutions in the class of classic continuous and smooth arcs. This suggests the need of a relaxation or extension of the problem ensuring the existence of a solution in some enlarged class of arcs. This work aims at the development of an extension for a more general optimal control problem with nonlinear control dynamics in which the control function takes values in some closed, but not necessarily bounded, set. To achieve this goal, we exploit the approach of R.V. Gamkrelidze based on the generalized controls, but related to discontinuous arcs. This leads to the notion of generalized impulsive control. The proposed extension links various approaches on the issue of extension found in the literature.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Human motion seems to be guided by some optimal principles. In general, it is assumed that human walking is generated with minimal energy consumption. However, in the presence of disturbances during gait, there is a trade-off between stability (avoiding a fall) and energy-consumption. This work analyses the obstacle-crossing with the leading foot. It was hypothesized that energy-saving mechanisms during obstacle-crossing are modulated by the requirement to avoid a fall using the available sensory information, particularly, by vision. A total of fourteen subjects, seven with no visual impairment and seven blind, walked along a 5 meter flat pathway with an obstacle of 0.26 m height located at 3 m from the starting point. The seven subjects with normal vision crossed the obstacle successfully 30 times in two conditions: blindfolded and with normal vision. The seven blind subjects did the same 30 times. The motion of the leading limb was recorded by video at 60 Hz. There were markers placed on the subject's hip, knee, ankle, rear foot, and forefoot. The motion data were filtered with a fourth order Butterworth filter with a cut-off frequency of 4 Hz. The following variables were calculated: horizontal distance between the leading foot and the obstacle at toe-off prior to (DHPO) and after (DHOP) crossing, minimal vertical height from the foot to the obstacle (DVPO), average step velocity (VELOm). The segmental energies were also calculated and the work consumed by the leading limb during the crossing obstacle was computed for each trial. A statistical analysis repeated-measures ANOVA was conducted on these dependent variables revealing significant differences between the vision and non-vision conditions in healthy subjects. In addition, there were no significant differences between the blind and people with vision blindfolded. These results indicate that vision is crucial to determine the optimal trade-off between energy consumption and avoiding a trip during obstacle crossing.
Resumo:
A first order analytical model for optimal small amplitude attitude maneuvers of spacecraft with cylindrical symmetry in an elliptical orbits is presented. The optimization problem is formulated as a Mayer problem with the control torques provided by a power limited propulsion system. The state is defined by Seffet-Andoyer's variables and the control by the components of the propulsive torques. The Pontryagin Maximum Principle is applied to the problem and the optimal torques are given explicitly in Serret-Andoyer's variables and their adjoints. For small amplitude attitude maneuvers, the optimal Hamiltonian function is linearized around a reference attitude. A complete first order analytical solution is obtained by simple quadrature and is expressed through a linear algebraic system involving the initial values of the adjoint variables. A numerical solution is obtained by taking the Euler angles formulation of the problem, solving the two-point boundary problem through the shooting method, and, then, determining the Serret-Andoyer variables through Serret-Andoyer transformation. Numerical results show that the first order solution provides a good approximation to the optimal control law and also that is possible to establish an optimal control law for the artificial satellite's attitude. (C) 2003 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.