145 resultados para Discrete Dynamical Systems
Resumo:
Predictability is related to the uncertainty in the outcome of future events during the evolution of the state of a system. The cluster weighted modeling (CWM) is interpreted as a tool to detect such an uncertainty and used it in spatially distributed systems. As such, the simple prediction algorithm in conjunction with the CWM forms a powerful set of methods to relate predictability and dimension.
Resumo:
We study the existence of periodic solutions in the neighbourhood of symmetric (partially) elliptic equilibria in purely reversible Hamiltonian vector fields. These are Hamiltonian vector fields with an involutory reversing symmetry R. We contrast the cases where R acts symplectically and anti-symplectically. In case R acts anti-symplectically, generically purely imaginary eigenvalues are isolated, and the equilibrium is contained in a local two-dimensional invariant manifold containing symmetric periodic solutions encircling the equilibrium point. In case R acts symplectically, generically purely imaginary eigenvalues are doubly degenerate, and the equilibrium is contained in two two-dimensional invariant manifolds containing nonsymmetric periodic solutions encircling the equilibrium point. In addition, there exists a three-dimensional invariant surface containing a two-parameter family of symmetric periodic solutions.
Resumo:
We study non-hyperbolic repellers of diffeomorphisms derived from transitive Anosov diffeomorphisms with unstable dimension 2 through a Hopf bifurcation. Using some recent abstract results about non-uniformly expanding maps with holes, by ourselves and by Dysman, we show that the Hausdorff dimension and the limit capacity (box dimension) of the repeller are strictly less than the dimension of the ambient manifold.
Resumo:
We prove that Hénon-like strange attractors of diffeomorphisms in any dimensions, such as considered in [2],[7], and [9] support a unique Sinai-Ruelle-Bowen (SRB) measure and have the no-hole property: Lebesgue almost every point in the basin of attraction is generic for the SRB measure. This extends two-dimensional results of Benedicks-Young [4] and Benedicks-Viana [3], respectively.
Resumo:
We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.
Resumo:
In this work we study the periodic solutions, their stability and bifurcation for the class of Duffing differential equation mathematical equation represented where C > 0, ε > 0 and Λ are real parameter, A(t), b(t) and h(t) are continuous T periodic functions and ε is sufficiently small. Our results are proved using the averaging method of first order.
Resumo:
In this work we analyze the convergence of solutions of the Poisson equation with Neumann boundary conditions in a two-dimensional thin domain with highly oscillatory behavior. We consider the case where the height of the domain, amplitude and period of the oscillations are all of the same order, and given by a small parameter e > 0. Using an appropriate corrector approach, we show strong convergence and give error estimates when we replace the original solutions by the first-order expansion through the Multiple-Scale Method.
Resumo:
In this paper the dynamics of the ideal and non-ideal Duffing oscillator with chaotic behavior is considered. In order to suppress the chaotic behavior and to control the system, a control signal is introduced in the system dynamics. The control strategy involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system in a periodic orbit, obtained by the harmonic balance method, and a state feedback control, obtained by the state dependent Riccati equation, to bring the system trajectory into the desired periodic orbit. Additionally, the control strategy includes an active magnetorheological damper to actuate on the system. The control force of the damper is a function of the electric current applied in the coil of the damper, that is based on the force given by the controller and on the velocity of the damper piston displacement. Numerical simulations demonstrate the effectiveness of the control strategy in leading the system from any initial condition to a desired orbit, and considering the mathematical model of the damper (MR), it was possible to control the force of the shock absorber (MR), by controlling the applied electric current in the coils of the damper. © 2012 Foundation for Scientific Research and Technological Innovation.
Resumo:
In this article we discuss some qualitative and geometric aspects of non-smooth dynamical systems theory. Our goal is to study the diagram bifurcation of typical singularities that occur generically in one parameter families of certain piecewise smooth vector fields named Refracted Systems. Such systems has a codimension-one submanifold as its discontinuity set. © 2012 Elsevier Ltd.
Resumo:
This paper is mainly devoted to the study of the limit cycles that can bifurcate from a linear center using a piecewise linear perturbation in two zones. We consider the case when the two zones are separated by a straight line Σ and the singular point of the unperturbed system is in Σ. It is proved that the maximum number of limit cycles that can appear up to a seventh order perturbation is three. Moreover this upper bound is reached. This result confirms that these systems have more limit cycles than it was expected. Finally, center and isochronicity problems are also studied in systems which include a first order perturbation. For the latter systems it is also proved that, when the period function, defined in the period annulus of the center, is not monotone, then it has at most one critical period. Moreover this upper bound is also reached.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Synchronization in nonlinear dynamical systems, especially in chaotic systems, is field of research in several areas of knowledge, such as Mechanical Engineering and Electrical Engineering, Biology, Physics, among others. In simple terms, two systems are synchronized if after a certain time, they have similar behavior or occurring at the same time. The sound and image in a film is an example of this phenomenon in our daily lives. The studies of synchronization include studies of continuous dynamic systems, governed by differential equations or studies of discrete time dynamical systems, also called maps. Maps correspond, in general, discretizations of differential equations and are widely used to model physical systems, mainly due to its ease of computational. It is enough to make iterations from given initial conditions for knowing the trajectories of system. This completion of course work based on the study of the map called ”Zaslavksy Web Map”. The Zaslavksy Web Map is a result of the combination of the movements of a particle in a constant magnetic field and a wave electrostatic propagating perpendicular to the magnetic field. Apart from interest in the particularities of this map, there was objective the deepening of concepts of nonlinear dynamics, as equilibrium points, linear stability, stability non-linear, bifurcation and chaos