Error estimates for a neumann problem in highly oscillating thin domains


Autoria(s): Pereira, Marcone C.; Silva, Ricardo P.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/01/2013

Resumo

In this work we analyze the convergence of solutions of the Poisson equation with Neumann boundary conditions in a two-dimensional thin domain with highly oscillatory behavior. We consider the case where the height of the domain, amplitude and period of the oscillations are all of the same order, and given by a small parameter e > 0. Using an appropriate corrector approach, we show strong convergence and give error estimates when we replace the original solutions by the first-order expansion through the Multiple-Scale Method.

Formato

803-817

Identificador

http://dx.doi.org/10.3934/dcds.2013.33.803

Discrete and Continuous Dynamical Systems- Series A, v. 33, n. 2, p. 803-817, 2013.

1078-0947

1553-5231

http://hdl.handle.net/11449/74292

10.3934/dcds.2013.33.803

WOS:000309289900018

2-s2.0-84867865189

Idioma(s)

eng

Relação

Discrete and Continuous Dynamical Systems- Series A

Direitos

closedAccess

Palavras-Chave #Correctors #Error estimate. #Homogenization #Thin domains
Tipo

info:eu-repo/semantics/article