257 resultados para Polynomials.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Denote by X(nk)(alpha), k = 1, ..., n, the zeros of the Laguerre polynomial L(n)((alpha))(X). We establish monotonicity with respect to the parameter at of certain functions involving X(nk)(alpha). As a consequence we obtain sharp upper bounds for the largest zero of L(n)((alpha))(X). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We prove that the only Jensen polynomials associated with an entire function in the Laguerre-Polya class that are orthogonal are the Laguerre polynomials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A positive measure psi defined on [a, b] such that its moments mu(n) = integral(b)(a)t(n) d psi(t) exist for n = 0, +/-1, +/-2. can be called a strong positive measure on [a, b] When 0 <= a < b <= infinity the sequence of polynomials {Q(n)} defined by integral(b)(a) t(-n+s) Q(n)(t) d psi(t) = 0, s = 0, ., n - 1, exist and they are referred here as L-orthogonal polynomials We look at the connection between two sequences of L-orthogonal polynomials {Q(n)((1))} and {Q(n)((0))} associated with two closely related strong positive measures and th defined on [a, b]. To be precise, the measures are related to each other by (t - kappa) d psi(1)(t) = gamma d psi(0)(t). where (t - kappa)/gamma is positive when t is an element of (n, 6). As applications of our study. numerical generation of new L-orthogonal polynomials and monotonicity properties of the zeros of a certain class of L-orthogonal polynomials are looked at. (C) 2010 IMACS Published by Elsevier B V All rights reserved
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Inner products of the type < f, g >(S) = < f, g >psi(0) + < f', g'>psi(1), where one of the measures psi(0) or psi(1) is the measure associated with the Gegenbauer polynomials, are usually referred to as Gegenbauer-Sobolev inner products. This paper deals with some asymptotic relations for the orthogonal polynomials with respect to a class of Gegenbauer-Sobolev inner products. The inner products are such that the associated pairs of symmetric measures (psi(0), psi(1)) are not within the concept of symmetrically coherent pairs of measures.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Szego polynomials with respect to the weight function w(theta) = e(eta theta)[sin(theta/2)](2 lambda), where eta, lambda is an element of R and lambda > -1/2 are considered. Many of the basic relations associated with these polynomials are given explicitly. Two sequences of para-orthogonal polynomials with explicit relations are also given.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Asymptotics for Jacobi-Sobolev orthogonal polynomials associated with non-coherent pairs of measures
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)