140 resultados para Degenerate Hopf bifurcation
Resumo:
We study non-hyperbolic repellers of diffeomorphisms derived from transitive Anosov diffeomorphisms with unstable dimension 2 through a Hopf bifurcation. Using some recent abstract results about non-uniformly expanding maps with holes, by ourselves and by Dysman, we show that the Hausdorff dimension and the limit capacity (box dimension) of the repeller are strictly less than the dimension of the ambient manifold.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Path formulation can be used to classify and structure efficiently multiparameter bifurcation problems around fundamental singularities: the cores. The non-degenerate umbilic singularities are the generic cores for four situations in corank 2: the general or gradient problems and the ℤ 2-equivariant (general or gradient) problems. Those categories determine an interesting 'Russian doll' type of structure in the universal unfoldings of the umbilic singularities. One advantage of our approach is that we can handle one, two or more parameters using the same framework (even considering some special parameter structure, for instance, some internal hierarchy). We classify the generic bifurcations that occur in those cases with one or two parameters.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We study the dynamics of a class of reversible vector fields having eigenvalues (0, alphai, -alphai) around their symmetric equilibria. We give a complete list of all normal forms for such vector fields, their versal unfoldings, and the corresponding bifurcation diagrams of the codimensional-one case. We also obtain some important conclusions on the existence of homoclinic and heteroclinic orbits, invariant tori and symmetric periodic orbits.
Resumo:
We implement a singularity theory approach, the path formulation, to classify D3-equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a Ba-miniversal unfolding f0 of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of F0 onto its unfolding parameter space. We apply our results to degenerate bifurcation of period-3 subharmonics in reversible systems, in particular in the 1:1-resonance.
Resumo:
In this paper, by using the Poincare compactification in R(3) we make a global analysis of the Lorenz system, including the complete description of its dynamic behavior on the sphere at infinity. Combining analytical and numerical techniques we show that for the parameter value b = 0 the system presents an infinite set of singularly degenerate heteroclinic cycles, which consist of invariant sets formed by a line of equilibria together with heteroclinic orbits connecting two of the equilibria. The dynamical consequences related to the existence of such cycles are discussed. In particular a possibly new mechanism behind the creation of Lorenz-like chaotic attractors, consisting of the change in the stability index of the saddle at the origin as the parameter b crosses the null value, is proposed. Based on the knowledge of this mechanism we have numerically found chaotic attractors for the Lorenz system in the case of small b > 0, so nearby the singularly degenerate heteroclinic cycles.
Resumo:
In this paper we study the local codimension one and two bifurcations which occur in a family of three-dimensional vector fields depending on three parameters. An equivalent family, depending on five parameters, was recently proposed as a new chaotic system with a Lorenz-like butterfly shaped attractor and was studied mainly from a numerical point of view, for particular values of the parameters, for which computational evidences of the chaotic attractor was shown. In order to contribute to the understand of this new system we present an analytical study and the bifurcation diagrams of an equivalent three parameter system, showing the qualitative changes in the dynamics of its solutions, for different values of the parameters. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)