Bifurcation of limit cycles from an n-dimensional linear center inside a class of piecewise linear differential systems
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/01/2012
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 07/07957-8 Processo FAPESP: 07/08707-5 Let n be an even integer. We study the bifurcation of limit cycles from the periodic orbits of the n-dimensional linear center given by the differential system<(x)over dot>(1) = -x(2), <(x)over dot>(2) = x(1), ... , <(x)over dot>(n-1) = -x(n), <(x)over dot>(n) = x(n-1),perturbed inside a class of piecewise linear differential systems. Our main result shows that at most (4n - 6)(n/2-1) limit cycles can bifurcate up to first-order expansion of the displacement function with respect to a small parameter. For proving this result we use the averaging theory in a form where the differentiability of the system is not needed. (C) 2011 Elsevier Ltd. All rights reserved. |
Formato |
143-152 |
Identificador |
http://dx.doi.org/10.1016/j.na.2011.08.013 Nonlinear Analysis-theory Methods & Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 75, n. 1, p. 143-152, 2012. 0362-546X http://hdl.handle.net/11449/10403 10.1016/j.na.2011.08.013 WOS:000296490000014 |
Idioma(s) |
eng |
Publicador |
Pergamon-Elsevier B.V. Ltd |
Relação |
Nonlinear Analysis-theory Methods & Applications |
Direitos |
closedAccess |
Palavras-Chave | #Limit cycles #Bifurcation #Control systems #Averaging method #Piecewise linear differential systems #Center |
Tipo |
info:eu-repo/semantics/article |