Path formulation for multiparameter D3-equivariant bifurcation problems
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
22/11/2010
|
Resumo |
We implement a singularity theory approach, the path formulation, to classify D3-equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a Ba-miniversal unfolding f0 of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of F0 onto its unfolding parameter space. We apply our results to degenerate bifurcation of period-3 subharmonics in reversible systems, in particular in the 1:1-resonance. |
Formato |
1363-1400 |
Identificador |
http://dx.doi.org/10.5802/aif.2558 Annales de l'Institut Fourier, v. 60, n. 4, p. 1363-1400, 2010. 0373-0956 http://hdl.handle.net/11449/71965 10.5802/aif.2558 2-s2.0-78349232386 |
Idioma(s) |
eng |
Relação |
Annales de l'Institut Fourier |
Direitos |
openAccess |
Palavras-Chave | #1:1-resonance #Degenerate bifurcation #Equivariant bifurcation #Path formulation #Reversible systems #Singularity theory #Subharmonic bifurcation |
Tipo |
info:eu-repo/semantics/article |