Path formulation for multiparameter D3-equivariant bifurcation problems


Autoria(s): Furter, Jacques-Élie; Sitta, Angela Maria
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

22/11/2010

Resumo

We implement a singularity theory approach, the path formulation, to classify D3-equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a Ba-miniversal unfolding f0 of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of F0 onto its unfolding parameter space. We apply our results to degenerate bifurcation of period-3 subharmonics in reversible systems, in particular in the 1:1-resonance.

Formato

1363-1400

Identificador

http://dx.doi.org/10.5802/aif.2558

Annales de l'Institut Fourier, v. 60, n. 4, p. 1363-1400, 2010.

0373-0956

http://hdl.handle.net/11449/71965

10.5802/aif.2558

2-s2.0-78349232386

Idioma(s)

eng

Relação

Annales de l'Institut Fourier

Direitos

openAccess

Palavras-Chave #1:1-resonance #Degenerate bifurcation #Equivariant bifurcation #Path formulation #Reversible systems #Singularity theory #Subharmonic bifurcation
Tipo

info:eu-repo/semantics/article