125 resultados para Co(II) and Ni(II) pyrazolyl complexes
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes the synthesis and characterization of 2-aminothiazole modified silica gel (SiAT) and the studies of adsorption and pre-concentration (in batch and using a flow-injection system coupled with optical emission spectrometer) of Cd(II), Cu(II) and Ni(II) in aqueous medium. The adsorption capacity for each metal ions in mmolg(-1) was: Cu(II) = 1.18, Ni(II) = 1.15 and Cd(II) = 1.10. The results obtained in the flow experiments showed about 100% of recovering of the metal ions adsorbed in a mini-column packed with 100 mg of SiAT, using 100 mu L of 2.0 mol L-1 HCl solution as eluent. The quantitative sorption-desorption of the metal ions made possible the application of a flow-injection system in the pre-concentration and quantification by ICP-OES of metal ions at trace level in natural water samples.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Oxycellulose (OXICEL) was packed in a glass column to pre-concentrate metal cations from aqueous solutions. The pre-concentrated metal cations are directly eluted from the column using 5.0 mL of 1.0 mol L(-1) hydrochloric acid. The optimum pre-concentration conditions are given and the retention efficency achieved is higher than 95%. The enrichment factor is 10 for sample volumes of 50 mL.
Resumo:
Synthesis and characterization, including data on thermal decomposition, are reported for the complexes of S,S'-methylenebis(cysteine) (djenkolic acid) with copper(II), zinc(II) and cadmium(II): CuC(7)H(12)N(2)O(4)S(2) [I]; ZnC(7)H(12)N(2)O(4)S(2) [II] and CdC(7)H(12)N(2)O(4)S(2) [III] X-ray diffraction showed that the compounds are isostructural and belong to a monoclinic system. According to IR spectra, COO, NH(2) groups and bridging sulfur atoms are the main coordination sites.
Resumo:
The low-weight Pd(II) coordination polymers [(N(3))(HL)Pd {Pd(3)(mu-N(3))(mu-L)(5)}10(mu-L)(2)Pd(L)(HL)]{L = Pz(-) (1); mPz(-) (2), IPz(-)(3)} and [(N(3))(HPz)Pd{Pd(6)(mu-N(3))(2)(mu-PZ)(5)(mu-L)(5)}(10)(mu-L)(2)Pd(Pz)(HPz)] {L = mPz(-) (4), dmPz(-) (5); IPz(-) (6)} {L = pyrazolate (Pz(-)), 4-methylpyrazolate(mPz(-)), 4-iodopyrazo late (IPz(-)), 3,5-dimethylpyrazolate (dmPz(-))} have been prepared in this work. IR spectra clearly indicated the exobidentate nature of pyrazolato ligands as well the end-on coordination mode of the azido group. The molecular weight determinations by osmometry indicated that the species have a low degree of polymerization (n = 10). NMR experiments showed two pyrazolate environments in a 2:1 ratio, being assigned to the six-membered ring Pd(mu-L)(2)Pd and the Pd(mu-N(3))(mu-L)Pd metallocycle, respectively. UV-visible spectroscopy gave further evidences for the oligomeric structures of 1-6. Some alternative structures for the isostructural polymers have been suggested. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Carboxymethylcellulose packed in to a glass column was used to pre-concentrate metallic cations from aqueous solutions. The pre-concentrated metal cations are directly eluted from the column using 5.0 mL of 1.0 mol L -1 hydrochloric acid. The optimum pre-concentration conditions are given (glass column, 16 cm length, 0.80 cm i.d., stationary phase height of 12 cm, flow-rate, 1.5 mL min -1). The recuperation efficiency achieved is greater than 95%, while the enrichment factor is 10 for 50 mL of solution (0.50 mg L -1 each).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The compounds [NiX 2(PPh 3) 2] (where X is Cl -, Br -, I -, NO - 3, NCS -; and PPh 3 is triphenylphosphine) were prepared and characterized by infrared and atomic absorption spectroscopies and by carbon and hydrogen analyses. Simultaneous thermogravimetric (TG) and derivative thermogravimetric (DTG) curves of these complexes were recorded in air. The decrease in mass observed indicates conversion of the complexes to oxides. The thermal decomposition of the halogen and nitrate complexes occurred in a number of steps; the thiocyanate complex decomposed in a single step. © 1994.
Resumo:
The Co(II)-diclofenac complex was evaluated by simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC). The DTA curve profile shows one exothermic peak because of the transition phase of the compound between 170 and 180 A degrees C, which was confirmed by X-ray powder diffractometry. The transition phase behavior was studied by DSC curves at several heating rates of a sample mass between 1 and 10 mg in nitrogen atmosphere and in a crucible with and without a lid. Thus, the kinetic parameters were evaluated using an isoconversional non-linear fitting proposed by Capela and Ribeiro. The results show that the activation energy and pre-exponential factor for the transition phase is dependant on the different experimental conditions. Nevertheless, these results indicate that the kinetic compensation effect shows a relationship between them.
Resumo:
Pseudohalide complexes of copper(II) with aliphatic bidentate amines, [Cu(N-3)(2)(N,N-diEten)](2) 1, [Cu(NCO)(2)(N,N-diEten)](2) 2, [Cu(NCO)(2)(N,N-diMeen)](2) 3, [Cu(N-3)(NCS)(N,N'-diMeen)](2) 4 and [Cu(N-3)(NCO)(N,N-diMeen)](2) 5 (N,N-diEten=N,N-diethylethylenediamine; N,N-diMeen=N,N- dimethyl-ethylenediamine and N,N'-diMeen = N,N'-dimethylethylenediamine), were prepared, characterized and their thermal behavior was investigated by TG curves. According to thermal analysis and X-ray diffraction patterns all compounds decomposed giving copper(II) oxide as final product. The mechanisms of decomposition were proposed and an order of thermal stability was established.
Resumo:
The structure of the two azide-complexes, [Cu(N-3)(2)(N,N-diEten)](2) and [Cu(N-3)(2)(tmeen)](2), N,N-diEten=N,N-diethylethylenediamine; tmeen=N,N,N',N'-tetramethyethylenediamine in solutions of acetonitrile, acetone, tetrahydrofuran, chloroform and dichloromethane, were investigated by infrared spectroscopy. The data show that the complex [Cu(N-3)(2)(N,N-diEten)](2) mantains its structure in solution, while that for [Cu(N-3)(2)(tmeen)](2) is modified.