30 resultados para Bifurcation de col nilpotent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Path formulation can be used to classify and structure efficiently multiparameter bifurcation problems around fundamental singularities: the cores. The non-degenerate umbilic singularities are the generic cores for four situations in corank 2: the general or gradient problems and the ℤ 2-equivariant (general or gradient) problems. Those categories determine an interesting 'Russian doll' type of structure in the universal unfoldings of the umbilic singularities. One advantage of our approach is that we can handle one, two or more parameters using the same framework (even considering some special parameter structure, for instance, some internal hierarchy). We classify the generic bifurcations that occur in those cases with one or two parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. ẋ = f (x) + εg (x, t) + ε2g (x, t, ε), where x ∈ Ω ⊂ ℝn, g, g are T periodic functions of t and there is a 0 ∈ Ω such that f (a 0) = 0 and f′ (a0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits. © 2007 Birkhäuser Verlag, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We implement a singularity theory approach, the path formulation, to classify D3-equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a Ba-miniversal unfolding f0 of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of F0 onto its unfolding parameter space. We apply our results to degenerate bifurcation of period-3 subharmonics in reversible systems, in particular in the 1:1-resonance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the dynamical response of a coupled oscillator is investigated, taking in consideration the nonlinear behavior of a SMA spring coupling the two oscillators. Due to the nonlinear coupling terms, the system exhibits both regular and chaotic motions. The Poincaré sections for different sets of coupling parameters are verified. © 2011 World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we discuss some qualitative and geometric aspects of non-smooth dynamical systems theory. Our goal is to study the diagram bifurcation of typical singularities that occur generically in one parameter families of certain piecewise smooth vector fields named Refracted Systems. Such systems has a codimension-one submanifold as its discontinuity set. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the local properties of a class of codimension-2 defects of the 6d N = (2, 0) theories of type J = A, D, E labeled by nilpotent orbits of a Lie algebra $g, where g is determined by J and the outer-automorphism twist around the defect. This class is a natural generalization of the defects of the six-dimensional (6d) theory of type SU(N) labeled by a Young diagram with N boxes. For any of these defects, we determine its contribution to the dimension of the Higgs branch, to the Coulomb branch operators and their scaling dimensions, to the four-dimensional (4d) central charges a and c and to the flavor central charge k. © 2013 World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we prove that the full repressilator equations in dimension six undergo a supercritical Hopf bifurcation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)