473 resultados para Modificação de zeros
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Unlike the already described techniques, which are based on imaginary lines among extremities or bone projections, this research describes a collection technique modification of cerebrospinal fluid (CSF) in dogs, in the atlantooccipital space. The palpation of bone structures in this joint, plus the supported directioning of the needle, does make the collection easy, even by professionals which have no experience in this kind of procedure. The applied technique enabled the collection of adequate volumes of limpid and colorless CSF of 50 healthy dogs in the first attempt of collection. There was no contamination with blood during the procedure, what made possible the correct interpretation of laboratory parameters usually examined in CSF samples.
Resumo:
This paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
We prove that the zeros of the polynomials P.. (a) of degree m, defined by Boros and Moll via[GRAPHICS]approach the lemmiscate {zeta epsilon C: \zeta(2) - 1\ = Hzeta < 0}, as m --> infinity. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We discuss an old theorem of Obrechkoff and some of its applications. Some curious historical facts around this theorem are presented. We make an attempt to look at some known results on connection coefficients, zeros and Wronskians of orthogonal polynomials from the perspective of Obrechkoff's theorem. Necessary conditions for the positivity of the connection coefficients of two families of orthogonal polynomials are provided. Inequalities between the kth zero of an orthogonal polynomial p(n)(x) and the largest (smallest) zero of another orthogonal polynomial q(n)(x) are given in terms of the signs of the connection coefficients of the families {p(n)(x)} and {q(n)(x)}, An inequality between the largest zeros of the Jacobi polynomials P-n((a,b)) (x) and P-n((alpha,beta)) (x) is also established. (C) 2001 Elsevier B.V. B.V. All rights reserved.