7 resultados para intrinsic Gaussian Markov random field
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
Resumo:
In this work, the Markov chain will be the tool used in the modeling and analysis of convergence of the genetic algorithm, both the standard version as for the other versions that allows the genetic algorithm. In addition, we intend to compare the performance of the standard version with the fuzzy version, believing that this version gives the genetic algorithm a great ability to find a global optimum, own the global optimization algorithms. The choice of this algorithm is due to the fact that it has become, over the past thirty yares, one of the more importan tool used to find a solution of de optimization problem. This choice is due to its effectiveness in finding a good quality solution to the problem, considering that the knowledge of a good quality solution becomes acceptable given that there may not be another algorithm able to get the optimal solution for many of these problems. However, this algorithm can be set, taking into account, that it is not only dependent on how the problem is represented as but also some of the operators are defined, to the standard version of this, when the parameters are kept fixed, to their versions with variables parameters. Therefore to achieve good performance with the aforementioned algorithm is necessary that it has an adequate criterion in the choice of its parameters, especially the rate of mutation and crossover rate or even the size of the population. It is important to remember that those implementations in which parameters are kept fixed throughout the execution, the modeling algorithm by Markov chain results in a homogeneous chain and when it allows the variation of parameters during the execution, the Markov chain that models becomes be non - homogeneous. Therefore, in an attempt to improve the algorithm performance, few studies have tried to make the setting of the parameters through strategies that capture the intrinsic characteristics of the problem. These characteristics are extracted from the present state of execution, in order to identify and preserve a pattern related to a solution of good quality and at the same time that standard discarding of low quality. Strategies for feature extraction can either use precise techniques as fuzzy techniques, in the latter case being made through a fuzzy controller. A Markov chain is used for modeling and convergence analysis of the algorithm, both in its standard version as for the other. In order to evaluate the performance of a non-homogeneous algorithm tests will be applied to compare the standard fuzzy algorithm with the genetic algorithm, and the rate of change adjusted by a fuzzy controller. To do so, pick up optimization problems whose number of solutions varies exponentially with the number of variables
Resumo:
Ising and m-vector spin-glass models are studied, in the limit of infinite-range in-teractions, through the replica method. First, the m-vector spin glass, in the presence of an external uniform magnetic field, as well as of uniaxial anisotropy fields, is consi-dered. The effects of the anisotropics on the phase diagrams, and in particular, on the Gabay-Toulouse line, which signals the transverse spin-glass ordering, are investigated. The changes in the Gabay-Toulouse line, due to the presence of anisotropy fields which favor spin orientations along the Cartesian axes (m = 2: planar anisotropy; m = 3: cubic anisotropy), are also studied. The antiferromagnetic Ising spin glass, in the presence of uniform and Gaussian random magnetic fields, is investigated through a two-sublattice generalization of the Sherrington-Kirpaktrick model. The effects of the magnetic-field randomness on the phase diagrams of the model are analysed. Some confrontations of the present results with experimental observations available in the literature are discussed
Resumo:
In this work we have studied the effects of random biquadratic and random fields in spin-glass models using the replica method. The effect of a random biquadratic coupling was studied in two spin-1 spin-glass models: in one case the interactions occur between pairs of spins, whereas in the second one the interactions occur between p spins and the limit p > oo is considered. Both couplings (spin glass and biquadratic) have zero-mean Gaussian probability distributions. In the first model, the replica-symmetric assumption reveals that the system presents two pha¬ses, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic cou¬plings between the spins. For the case p oo, the replica-symmetric assumption yields again only two phases, namely, paramagnetic and quadrupolar. In both these phases the spin-glass parameter is zero. Besides, it is shown that they are stable under the Almeida-Thouless stability analysis. One of them presents negative entropy at low temperatures. We developed one step of replica simmetry breaking and noticed that a new phase, the biquadratic glass phase, emerge. In this way we have obtained the correct phase diagram, with.three first-order transition lines. These lines merges in a common triple point. The effects of random fields were studied in the Sherrington-Kirkpatrick model consi¬dered in the presence of an external random magnetic field following a trimodal distribu¬tion {P{hi) = p+S(hi - h0) +Po${hi) +pS(hi + h0))- It is shown that the border of the ferromagnetic phase may present, for conveniently chosen values of p0 and hQ, first-order phase transitions, as well as tricritical points at finite temperatures. It is verified that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these transitions are reduced for increasing values of po- In fact, the threshold value pg, above which all phase transitions are continuous, is calculated analytically. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified
Resumo:
This paper presents the public square as a subsystem of the city for the potential integration of elements 'natural' and built environment. But sometimes the suitability of projects and the social processes involved are not compatible and favorable to their real functions in urban space. The city of Natal, with a population of 803,739 inhabitants has 253 public parks not uniformly distributed in the urban area, but mostly in central areas and their absence in some peripheral neighborhoods. In this sense, the objective of this paper is to analyze the quality and spatiality of the city's public squares within the urban socio-environmental problems. For this, use of simple random sampling to define the sample and the proportional allocation of districts, totaling 168 squares to be raised. We prepared a form to collect data on the field that includes aspects of leisure, infrastructure and environment. For each square sampled was calculated Square Quality Index (PQI), then calculating the average per IQP neighborhood. The rates found were crossed with census data and Municipal Public Administration by neighborhood, using multivariate analysis. We generated maps, charts and tables, considered appropriate to each question format, focused comparison. The public square appears as an indicator of environmental challenges present in intra-urban spaces of the city. Their spatial distribution is not consistent demand population, both by disposition and by how much. In terms of quality are characterized by different levels of inadequacy and degradation aspects of leisure, environmental and infrastructure, often causing disfigurement, abandonment and improper occupation in such spaces. Multivariate analysis point to a central concentration and their problems in certain administrative units, not only as regards the public squares, but also to aspects of education, income, and other violence, perpetuating the problem. The various levels of inadequacy and degradation of public squares have been more blatant in the poorest neighborhoods of the city, pointing to a structural pattern associated with the intrinsic characteristics of the neighborhood and the socioeconomic profile of the local population. These are problems of social and environmental dimensions, threaded in and influenced the political, economic and broader social process of transformation of the city and the urban. Based on an uneven process in which space necessarily reflect the contradictions inherent in the active forces and interests. Thus evidencing the importance of managing the necessary public effectively engaged with the problems that are present there, in order to equate them, without being prioritized certain areas of the city at the expense of others
Resumo:
The random walk models with temporal correlation (i.e. memory) are of interest in the study of anomalous diffusion phenomena. The random walk and its generalizations are of prominent place in the characterization of various physical, chemical and biological phenomena. The temporal correlation is an essential feature in anomalous diffusion models. These temporal long-range correlation models can be called non-Markovian models, otherwise, the short-range time correlation counterparts are Markovian ones. Within this context, we reviewed the existing models with temporal correlation, i.e. entire memory, the elephant walk model, or partial memory, alzheimer walk model and walk model with a gaussian memory with profile. It is noticed that these models shows superdiffusion with a Hurst exponent H > 1/2. We study in this work a superdiffusive random walk model with exponentially decaying memory. This seems to be a self-contradictory statement, since it is well known that random walks with exponentially decaying temporal correlations can be approximated arbitrarily well by Markov processes and that central limit theorems prohibit superdiffusion for Markovian walks with finite variance of step sizes. The solution to the apparent paradox is that the model is genuinely non-Markovian, due to a time-dependent decay constant associated with the exponential behavior. In the end, we discuss ideas for future investigations.
Resumo:
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.