33 resultados para Redes em chip. Processadores. IPNoSyS. Paralelismo.Software Pipelining. Desempenho
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Alongside the advances of technologies, embedded systems are increasingly present in our everyday. Due to increasing demand for functionalities, many tasks are split among processors, requiring more efficient communication architectures, such as networks on chip (NoC). The NoCs are structures that have routers with channel point-to-point interconnect the cores of system on chip (SoC), providing communication. There are several networks on chip in the literature, each with its specific characteristics. Among these, for this work was chosen the Integrated Processing System NoC (IPNoSyS) as a network on chip with different characteristics compared to general NoCs, because their routing components also accumulate processing function, ie, units have functional able to execute instructions. With this new model, packets are processed and routed by the router architecture. This work aims at improving the performance of applications that have repetition, since these applications spend more time in their execution, which occurs through repeated execution of his instructions. Thus, this work proposes to optimize the runtime of these structures by employing a technique of instruction-level parallelism, in order to optimize the resources offered by the architecture. The applications are tested on a dedicated simulator and the results compared with the original version of the architecture, which in turn, implements only packet level parallelism
Resumo:
It bet on the next generation of computers as architecture with multiple processors and/or multicore processors. In this sense there are challenges related to features interconnection, operating frequency, the area on chip, power dissipation, performance and programmability. The mechanism of interconnection and communication it was considered ideal for this type of architecture are the networks-on-chip, due its scalability, reusability and intrinsic parallelism. The networks-on-chip communication is accomplished by transmitting packets that carry data and instructions that represent requests and responses between the processing elements interconnected by the network. The transmission of packets is accomplished as in a pipeline between the routers in the network, from source to destination of the communication, even allowing simultaneous communications between pairs of different sources and destinations. From this fact, it is proposed to transform the entire infrastructure communication of network-on-chip, using the routing mechanisms, arbitration and storage, in a parallel processing system for high performance. In this proposal, the packages are formed by instructions and data that represent the applications, which are executed on routers as well as they are transmitted, using the pipeline and parallel communication transmissions. In contrast, traditional processors are not used, but only single cores that control the access to memory. An implementation of this idea is called IPNoSys (Integrated Processing NoC System), which has an own programming model and a routing algorithm that guarantees the execution of all instructions in the packets, preventing situations of deadlock, livelock and starvation. This architecture provides mechanisms for input and output, interruption and operating system support. As proof of concept was developed a programming environment and a simulator for this architecture in SystemC, which allows configuration of various parameters and to obtain several results to evaluate it
Resumo:
The increase of capacity to integrate transistors permitted to develop completed systems, with several components, in single chip, they are called SoC (System-on-Chip). However, the interconnection subsystem cans influence the scalability of SoCs, like buses, or can be an ad hoc solution, like bus hierarchy. Thus, the ideal interconnection subsystem to SoCs is the Network-on-Chip (NoC). The NoCs permit to use simultaneous point-to-point channels between components and they can be reused in other projects. However, the NoCs can raise the complexity of project, the area in chip and the dissipated power. Thus, it is necessary or to modify the way how to use them or to change the development paradigm. Thus, a system based on NoC is proposed, where the applications are described through packages and performed in each router between source and destination, without traditional processors. To perform applications, independent of number of instructions and of the NoC dimensions, it was developed the spiral complement algorithm, which finds other destination until all instructions has been performed. Therefore, the objective is to study the viability of development that system, denominated IPNoSys system. In this study, it was developed a tool in SystemC, using accurate cycle, to simulate the system that performs applications, which was implemented in a package description language, also developed to this study. Through the simulation tool, several result were obtained that could be used to evaluate the system performance. The methodology used to describe the application corresponds to transform the high level application in data-flow graph that become one or more packages. This methodology was used in three applications: a counter, DCT-2D and float add. The counter was used to evaluate a deadlock solution and to perform parallel application. The DCT was used to compare to STORM platform. Finally, the float add aimed to evaluate the efficiency of the software routine to perform a unimplemented hardware instruction. The results from simulation confirm the viability of development of IPNoSys system. They showed that is possible to perform application described in packages, sequentially or parallelly, without interruptions caused by deadlock, and also showed that the execution time of IPNoSys is more efficient than the STORM platform
Resumo:
The increasing complexity of integrated circuits has boosted the development of communications architectures like Networks-on-Chip (NoCs), as an architecture; alternative for interconnection of Systems-on-Chip (SoC). Networks-on-Chip complain for component reuse, parallelism and scalability, enhancing reusability in projects of dedicated applications. In the literature, lots of proposals have been made, suggesting different configurations for networks-on-chip architectures. Among all networks-on-chip considered, the architecture of IPNoSys is a non conventional one, since it allows the execution of operations, while the communication process is performed. This study aims to evaluate the execution of data-flow based applications on IPNoSys, focusing on their adaptation against the design constraints. Data-flow based applications are characterized by the flowing of continuous stream of data, on which operations are executed. We expect that these type of applications can be improved when running on IPNoSys, because they have a programming model similar to the execution model of this network. By observing the behavior of these applications when running on IPNoSys, were performed changes in the execution model of the network IPNoSys, allowing the implementation of an instruction level parallelism. For these purposes, analysis of the implementations of dataflow applications were performed and compared
Resumo:
The increasingly request for processing power during last years has pushed integrated circuit industry to look for ways of providing even more processing power with less heat dissipation, power consumption, and chip area. This goal has been achieved increasing the circuit clock, but since there are physical limits of this approach a new solution emerged as the multiprocessor system on chip (MPSoC). This approach demands new tools and basic software infrastructure to take advantage of the inherent parallelism of these architectures. The oil exploration industry has one of its firsts activities the project decision on exploring oil fields, those decisions are aided by reservoir simulations demanding high processing power, the MPSoC may offer greater performance if its parallelism can be well used. This work presents a proposal of a micro-kernel operating system and auxiliary libraries aimed to the STORM MPSoC platform analyzing its influence on the problem of reservoir simulation
Resumo:
The constant increase of complexity in computer applications demands the development of more powerful hardware support for them. With processor's operational frequency reaching its limit, the most viable solution is the use of parallelism. Based on parallelism techniques and the progressive growth in the capacity of transistors integration in a single chip is the concept of MPSoCs (Multi-Processor System-on-Chip). MPSoCs will eventually become a cheaper and faster alternative to supercomputers and clusters, and applications developed for these high performance systems will migrate to computers equipped with MP-SoCs containing dozens to hundreds of computation cores. In particular, applications in the area of oil and natural gas exploration are also characterized by the high processing capacity required and would benefit greatly from these high performance systems. This work intends to evaluate a traditional and complex application of the oil and gas industry known as reservoir simulation, developing a solution with integrated computational systems in a single chip, with hundreds of functional unities. For this, as the STORM (MPSoC Directory-Based Platform) platform already has a shared memory model, a new distributed memory model were developed. Also a message passing library has been developed folowing MPI standard
Resumo:
The number of applications based on embedded systems grows significantly every year, even with the fact that embedded systems have restrictions, and simple processing units, the performance of these has improved every day. However the complexity of applications also increase, a better performance will always be necessary. So even such advances, there are cases, which an embedded system with a single unit of processing is not sufficient to achieve the information processing in real time. To improve the performance of these systems, an implementation with parallel processing can be used in more complex applications that require high performance. The idea is to move beyond applications that already use embedded systems, exploring the use of a set of units processing working together to implement an intelligent algorithm. The number of existing works in the areas of parallel processing, systems intelligent and embedded systems is wide. However works that link these three areas to solve any problem are reduced. In this context, this work aimed to use tools available for FPGA architectures, to develop a platform with multiple processors to use in pattern classification with artificial neural networks
Resumo:
This work aims to obtain a low-cost virtual sensor to estimate the quality of LPG. For the acquisition of data from a distillation tower, software HYSYS ® was used to simulate chemical processes. These data will be used for training and validation of an Artificial Neural Network (ANN). This network will aim to estimate from available simulated variables such as temperature, pressure and discharge flow of a distillation tower, the mole fraction of pentane present in LPG. Thus, allowing a better control of product quality
Resumo:
In this paper artificial neural network (ANN) based on supervised and unsupervised algorithms were investigated for use in the study of rheological parameters of solid pharmaceutical excipients, in order to develop computational tools for manufacturing solid dosage forms. Among four supervised neural networks investigated, the best learning performance was achieved by a feedfoward multilayer perceptron whose architectures was composed by eight neurons in the input layer, sixteen neurons in the hidden layer and one neuron in the output layer. Learning and predictive performance relative to repose angle was poor while to Carr index and Hausner ratio (CI and HR, respectively) showed very good fitting capacity and learning, therefore HR and CI were considered suitable descriptors for the next stage of development of supervised ANNs. Clustering capacity was evaluated for five unsupervised strategies. Network based on purely unsupervised competitive strategies, classic "Winner-Take-All", "Frequency-Sensitive Competitive Learning" and "Rival-Penalize Competitive Learning" (WTA, FSCL and RPCL, respectively) were able to perform clustering from database, however this classification was very poor, showing severe classification errors by grouping data with conflicting properties into the same cluster or even the same neuron. On the other hand it could not be established what was the criteria adopted by the neural network for those clustering. Self-Organizing Maps (SOM) and Neural Gas (NG) networks showed better clustering capacity. Both have recognized the two major groupings of data corresponding to lactose (LAC) and cellulose (CEL). However, SOM showed some errors in classify data from minority excipients, magnesium stearate (EMG) , talc (TLC) and attapulgite (ATP). NG network in turn performed a very consistent classification of data and solve the misclassification of SOM, being the most appropriate network for classifying data of the study. The use of NG network in pharmaceutical technology was still unpublished. NG therefore has great potential for use in the development of software for use in automated classification systems of pharmaceutical powders and as a new tool for mining and clustering data in drug development
Resumo:
This study developed software rotines, in a system made basically from a processor board producer of signs and supervisory, wich main function was correcting the information measured by a turbine gas meter. This correction is based on the use of an intelligent algorithm formed by an artificial neural net. The rotines were implemented in the habitat of the supervisory as well as in the habitat of the DSP and have three main itens: processing, communication and supervision
Resumo:
The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison
Resumo:
In academia, it is common to create didactic processors, facing practical disciplines in the area of Hardware Computer and can be used as subjects in software platforms, operating systems and compilers. Often, these processors are described without ISA standard, which requires the creation of compilers and other basic software to provide the hardware / software interface and hinder their integration with other processors and devices. Using reconfigurable devices described in a HDL language allows the creation or modification of any microarchitecture component, leading to alteration of the functional units of data path processor as well as the state machine that implements the control unit even as new needs arise. In particular, processors RISP enable modification of machine instructions, allowing entering or modifying instructions, and may even adapt to a new architecture. This work, as the object of study addressing educational soft-core processors described in VHDL, from a proposed methodology and its application on two processors with different complexity levels, shows that it s possible to tailor processors for a standard ISA without causing an increase in the level hardware complexity, ie without significant increase in chip area, while its level of performance in the application execution remains unchanged or is enhanced. The implementations also allow us to say that besides being possible to replace the architecture of a processor without changing its organization, RISP processor can switch between different instruction sets, which can be expanded to toggle between different ISAs, allowing a single processor become adaptive hybrid architecture, which can be used in embedded systems and heterogeneous multiprocessor environments
Resumo:
This dissertation aims to develop a software applied to a communication system for a wireless sensor network (WSN) for tracking analog and digital variables and control valve of the gas flow in artificial oil s elevation units, Plunger Lift type. The reason for this implementation is due to the fact that, in the studied plant configuration, the sensors communicate with the PLC (Programmable and Logic Controller) by the cables and pipelines, making any changes in that system, such as changing the layout of it, as well as inconveniences that arise from the nature of the site, such as the vicinity s animals presence that tend to destroy the cables for interconnection of sensors to the PLC. For software development, was used communication polling method via SMAC protocol (Simple Medium Access ControlIEEE 802.15.4 standard) in the CodeWarrior environment to which generated a firmware, loaded into the WSN s transceivers, present in the kit MC13193-EVK, (all items described above are owners of Freescale Semiconductors Inc.). The network monitoring and parameterization used in its application, was developed in LabVIEW software from National Instruments. The results were obtained through the observation of the network s behavior of sensors proposal, focusing on aspects such as: indoor and outdoor quantity of packages received and lost, general aspects of reliability in data transmission, coexistence with other types of wireless networks and power consumption under different operating conditions. The results were considered satisfactory, which showed the software efficiency in this communication system
Resumo:
Nowadays, where the market competition requires products with better quality and a constant search for cost savings and a better use of raw materials, the research for more efficient control strategies becomes vital. In Natural Gas Processin Units (NGPUs), as in the most chemical processes, the quality control is accomplished through their products composition. However, the chemical composition analysis has a long measurement time, even when performed by instruments such as gas chromatographs. This fact hinders the development of control strategies to provide a better process yield. The natural gas processing is one of the most important activities in the petroleum industry. The main economic product of a NGPU is the liquefied petroleum gas (LPG). The LPG is ideally composed by propane and butane, however, in practice, its composition has some contaminants, such as ethane and pentane. In this work is proposed an inferential system using neural networks to estimate the ethane and pentane mole fractions in LPG and the propane mole fraction in residual gas. The goal is to provide the values of these estimated variables in every minute using a single multilayer neural network, making it possibly to apply inferential control techniques in order to monitor the LPG quality and to reduce the propane loss in the process. To develop this work a NGPU was simulated in HYSYS R software, composed by two distillation collumns: deethanizer and debutanizer. The inference is performed through the process variables of the PID controllers present in the instrumentation of these columns. To reduce the complexity of the inferential neural network is used the statistical technique of principal component analysis to decrease the number of network inputs, thus forming a hybrid inferential system. It is also proposed in this work a simple strategy to correct the inferential system in real-time, based on measurements of the chromatographs which may exist in process under study
Resumo:
This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing