7 resultados para Random Walk Models

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The random walk models with temporal correlation (i.e. memory) are of interest in the study of anomalous diffusion phenomena. The random walk and its generalizations are of prominent place in the characterization of various physical, chemical and biological phenomena. The temporal correlation is an essential feature in anomalous diffusion models. These temporal long-range correlation models can be called non-Markovian models, otherwise, the short-range time correlation counterparts are Markovian ones. Within this context, we reviewed the existing models with temporal correlation, i.e. entire memory, the elephant walk model, or partial memory, alzheimer walk model and walk model with a gaussian memory with profile. It is noticed that these models shows superdiffusion with a Hurst exponent H > 1/2. We study in this work a superdiffusive random walk model with exponentially decaying memory. This seems to be a self-contradictory statement, since it is well known that random walks with exponentially decaying temporal correlations can be approximated arbitrarily well by Markov processes and that central limit theorems prohibit superdiffusion for Markovian walks with finite variance of step sizes. The solution to the apparent paradox is that the model is genuinely non-Markovian, due to a time-dependent decay constant associated with the exponential behavior. In the end, we discuss ideas for future investigations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of aerodynamic loading variations has many engineering applications, including helicopter rotor blades, wind turbines and turbo machinery. This work uses a Vortex Method to make a lagrangian description of the a twodimensional airfoil/ incident wake vortex interaction. The flow is incompressible, newtonian, homogeneus and the Reynolds Number is 5x105 .The airfoil is a NACA 0018 placed a angle of attack of the 0° and 5°simulates with the Painel Method with a constant density vorticity panels and a generation poit is near the painel. The protector layer is created does not permit vortex inside the body. The vortex Lamb convection is realized with the Euler Method (first order) and Adans-Bashforth (second order). The Random Walk Method is used to simulate the diffusion. The circular wake has 366 vortex all over positive or negative vorticity located at different heights with respect to the airfoil chord. The Lift was calculated based in the algorithm created by Ricci (2002). This simulation uses a ready algorithm vatidated with single body does not have a incident wake. The results are compared with a experimental work The comparasion concludes that the experimental results has a good agrement with this papper

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to evaluate the influence of milking procedures on the levels of total bacterial count (TBC) in bovine milk. In the first study the influences of procedures for hygienic milking, cleaning of milking equipment and milk cooling tanks on the TBC levels were evaluated. Four bulk samples of milk were collected from each tank in eight properties for TBC analysis, employing the flow cytometry method. A questionnaire was applied in each property to assess the current situation of milking procedures on each production system that took part on this research, followed by training of employees in good agricultural practices in the production of milk and monitoring of the TBC measurements. The methodology for analysis of longitudinal data was considered, focusing on random effects models. The results showed that the handling procedures for milking and the cleanliness of the cooling tank contributed to a further reduction in the levels of TBC raw milk cooling tanks. The second study aimed to describe the percentage of the properties that comply with the Normative Instruction Nº 51 (Brazil s IN 51) with regard to total bacterial count (TBC) in bovine milk. The study was conducted from January 2010 to July 2011. Milk samples were collected from the eight properties selected for TBC analysis by the flow cytometry method. Again, on each property a questionnaire was applied to assess the current situation of milking procedures on each production system that took part on this research, followed by training of employees in good agricultural practices in the production of milk and monitoring of the TBC measurements. The methodology of marginal models based on Generalized Estimate Equations (GEEs) was followed in the statistical analysis. The results showed that the handling procedures of the milking and the cleanliness of the cooling tanks contributed to a considerable percentage of the properties that reached the limits of TBC established by IN 51

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Difusive processes are extremely common in Nature. Many complex systems, such as microbial colonies, colloidal aggregates, difusion of fluids, and migration of populations, involve a large number of similar units that form fractal structures. A new model of difusive agregation was proposed recently by Filoche and Sapoval [68]. Based on their work, we develop a model called Difusion with Aggregation and Spontaneous Reorganization . This model consists of a set of particles with excluded volume interactions, which perform random walks on a square lattice. Initially, the lattice is occupied with a density p = N/L2 of particles occupying distinct, randomly chosen positions. One of the particles is selected at random as the active particle. This particle executes a random walk until it visits a site occupied by another particle, j. When this happens, the active particle is rejected back to its previous position (neighboring particle j), and a new active particle is selected at random from the set of N particles. Following an initial transient, the system attains a stationary regime. In this work we study the stationary regime, focusing on scaling properties of the particle distribution, as characterized by the pair correlation function ø(r). The latter is calculated by averaging over a long sequence of configurations generated in the stationary regime, using systems of size 50, 75, 100, 150, . . . , 700. The pair correlation function exhibits distinct behaviors in three diferent density ranges, which we term subcritical, critical, and supercritical. We show that in the subcritical regime, the particle distribution is characterized by a fractal dimension. We also analyze the decay of temporal correlations

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the mechanisms responsible for the anomalous diffusion is the existence of long-range temporal correlations, for example, Fractional Brownian Motion and walk models according to Elephant memory and Alzheimer profiles, whereas in the latter two cases the walker can always "remember" of his first steps. The question to be elucidated, and the was the main motivation of our work, is if memory of the historic initial is condition for observation anomalous diffusion (in this case, superdiffusion). We give a conclusive answer, by studying a non-Markovian model in which the walkers memory of the past, at time t, is given by a Gaussian centered at time t=2 and standard deviation t which grows linearly as the walker ages. For large widths of we find that the model behaves similarly to the Elephant model; In the opposite limit (! 0), although the walker forget the early days, we observed similar results to the Alzheimer walk model, in particular the presence of amnestically induced persistence, characterized by certain log-periodic oscillations. We conclude that the memory of earlier times is not a necessary condition for the generating of superdiffusion nor the amnestically induced persistence and can appear even in profiles of memory that forgets the initial steps, like the Gausssian memory profile investigated here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.