5 resultados para Otimização global
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The objective in the facility location problem with limited distances is to minimize the sum of distance functions from the facility to the customers, but with a limit on each distance, after which the corresponding function becomes constant. The problem has applications in situations where the service provided by the facility is insensitive after a given threshold distance (eg. fire station location). In this work, we propose a global optimization algorithm for the case in which there are lower and upper limits on the numbers of customers that can be served
Resumo:
In this work, the Markov chain will be the tool used in the modeling and analysis of convergence of the genetic algorithm, both the standard version as for the other versions that allows the genetic algorithm. In addition, we intend to compare the performance of the standard version with the fuzzy version, believing that this version gives the genetic algorithm a great ability to find a global optimum, own the global optimization algorithms. The choice of this algorithm is due to the fact that it has become, over the past thirty yares, one of the more importan tool used to find a solution of de optimization problem. This choice is due to its effectiveness in finding a good quality solution to the problem, considering that the knowledge of a good quality solution becomes acceptable given that there may not be another algorithm able to get the optimal solution for many of these problems. However, this algorithm can be set, taking into account, that it is not only dependent on how the problem is represented as but also some of the operators are defined, to the standard version of this, when the parameters are kept fixed, to their versions with variables parameters. Therefore to achieve good performance with the aforementioned algorithm is necessary that it has an adequate criterion in the choice of its parameters, especially the rate of mutation and crossover rate or even the size of the population. It is important to remember that those implementations in which parameters are kept fixed throughout the execution, the modeling algorithm by Markov chain results in a homogeneous chain and when it allows the variation of parameters during the execution, the Markov chain that models becomes be non - homogeneous. Therefore, in an attempt to improve the algorithm performance, few studies have tried to make the setting of the parameters through strategies that capture the intrinsic characteristics of the problem. These characteristics are extracted from the present state of execution, in order to identify and preserve a pattern related to a solution of good quality and at the same time that standard discarding of low quality. Strategies for feature extraction can either use precise techniques as fuzzy techniques, in the latter case being made through a fuzzy controller. A Markov chain is used for modeling and convergence analysis of the algorithm, both in its standard version as for the other. In order to evaluate the performance of a non-homogeneous algorithm tests will be applied to compare the standard fuzzy algorithm with the genetic algorithm, and the rate of change adjusted by a fuzzy controller. To do so, pick up optimization problems whose number of solutions varies exponentially with the number of variables
Resumo:
This work proposes a formulation for optimization of 2D-structure layouts submitted to mechanic and thermal shipments and applied an h-adaptive filter process which conduced to computational low spend and high definition structural layouts. The main goal of the formulation is to minimize the structure mass submitted to an effective state of stress of von Mises, with stability and lateral restriction variants. A criterion of global measurement was used for intents a parametric condition of stress fields. To avoid singularity problems was considerate a release on the stress restriction. On the optimization was used a material approach where the homogenized constructive equation was function of the material relative density. The intermediary density effective properties were represented for a SIMP-type artificial model. The problem was simplified by use of the method of finite elements of Galerkin using triangles with linear Lagrangian basis. On the solution of the optimization problem, was applied the augmented Lagrangian Method, that consists on minimum problem sequence solution with box-type restrictions, resolved by a 2nd orderprojection method which uses the method of the quasi-Newton without memory, during the problem process solution. This process reduces computational expends showing be more effective and solid. The results materialize more refined layouts with accurate topologic and shape of structure definitions. On the other hand formulation of mass minimization with global stress criterion provides to modeling ready structural layouts, with violation of the criterion of homogeneous distributed stress
Resumo:
This work proposes a computational methodology to solve problems of optimization in structural design. The application develops, implements and integrates methods for structural analysis, geometric modeling, design sensitivity analysis and optimization. So, the optimum design problem is particularized for plane stress case, with the objective to minimize the structural mass subject to a stress criterion. Notice that, these constraints must be evaluated at a series of discrete points, whose distribution should be dense enough in order to minimize the chance of any significant constraint violation between specified points. Therefore, the local stress constraints are transformed into a global stress measure reducing the computational cost in deriving the optimal shape design. The problem is approximated by Finite Element Method using Lagrangian triangular elements with six nodes, and use a automatic mesh generation with a mesh quality criterion of geometric element. The geometric modeling, i.e., the contour is defined by parametric curves of type B-splines, these curves hold suitable characteristics to implement the Shape Optimization Method, that uses the key points like design variables to determine the solution of minimum problem. A reliable tool for design sensitivity analysis is a prerequisite for performing interactive structural design, synthesis and optimization. General expressions for design sensitivity analysis are derived with respect to key points of B-splines. The method of design sensitivity analysis used is the adjoin approach and the analytical method. The formulation of the optimization problem applies the Augmented Lagrangian Method, which convert an optimization problem constrained problem in an unconstrained. The solution of the Augmented Lagrangian function is achieved by determining the analysis of sensitivity. Therefore, the optimization problem reduces to the solution of a sequence of problems with lateral limits constraints, which is solved by the Memoryless Quasi-Newton Method It is demonstrated by several examples that this new approach of analytical design sensitivity analysis of integrated shape design optimization with a global stress criterion purpose is computationally efficient
Resumo:
Registration of point clouds captured by depth sensors is an important task in 3D reconstruction applications based on computer vision. In many applications with strict performance requirements, the registration should be executed not only with precision, but also in the same frequency as data is acquired by the sensor. This thesis proposes theuse of the pyramidal sparse optical flow algorithm to incrementally register point clouds captured by RGB-D sensors (e.g. Microsoft Kinect) in real time. The accumulated errorinherent to the process is posteriorly minimized by utilizing a marker and pose graph optimization. Experimental results gathered by processing several RGB-D datasets validatethe system proposed by this thesis in visual odometry and simultaneous localization and mapping (SLAM) applications.