6 resultados para Minimization Problem, Lattice Model
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The topology optimization problem characterize and determine the optimum distribution of material into the domain. In other words, after the definition of the boundary conditions in a pre-established domain, the problem is how to distribute the material to solve the minimization problem. The objective of this work is to propose a competitive formulation for optimum structural topologies determination in 3D problems and able to provide high-resolution layouts. The procedure combines the Galerkin Finite Elements Method with the optimization method, looking for the best material distribution along the fixed domain of project. The layout topology optimization method is based on the material approach, proposed by Bendsoe & Kikuchi (1988), and considers a homogenized constitutive equation that depends only on the relative density of the material. The finite element used for the approach is a four nodes tetrahedron with a selective integration scheme, which interpolate not only the components of the displacement field but also the relative density field. The proposed procedure consists in the solution of a sequence of layout optimization problems applied to compliance minimization problems and mass minimization problems under local stress constraint. The microstructure used in this procedure was the SIMP (Solid Isotropic Material with Penalty). The approach reduces considerably the computational cost, showing to be efficient and robust. The results provided a well defined structural layout, with a sharpness distribution of the material and a boundary condition definition. The layout quality was proporcional to the medium size of the element and a considerable reduction of the project variables was observed due to the tetrahedrycal element
Resumo:
The pair contact process - PCP is a nonequilibrium stochastic model which, like the basic contact process - CP, exhibits a phase transition to an absorbing state. While the absorbing state CP corresponds to a unique configuration (empty lattice), the PCP process infinitely many. Numerical and theoretical studies, nevertheless, indicate that the PCP belongs to the same universality class as the CP (direct percolation class), but with anomalies in the critical spreading dynamics. An infinite number of absorbing configurations arise in the PCP because all process (creation and annihilation) require a nearest-neighbor pair of particles. The diffusive pair contact process - PCPD) was proposed by Grassberger in 1982. But the interest in the problem follows its rediscovery by the Langevin description. On the basis of numerical results and renormalization group arguments, Carlon, Henkel and Schollwöck (2001), suggested that certain critical exponents in the PCPD had values similar to those of the party-conserving - PC class. On the other hand, Hinrichsen (2001), reported simulation results inconsistent with the PC class, and proposed that the PCPD belongs to a new universality class. The controversy regarding the universality of the PCPD remains unresolved. In the PCPD, a nearest-neighbor pair of particles is necessary for the process of creation and annihilation, but the particles to diffuse individually. In this work we study the PCPD with diffusion of pair, in which isolated particles cannot move; a nearest-neighbor pair diffuses as a unit. Using quasistationary simulation, we determined with good precision the critical point and critical exponents for three values of the diffusive probability: D=0.5 and D=0.1. For D=0.5: PC=0.89007(3), β/v=0.252(9), z=1.573(1), =1.10(2), m=1.1758(24). For D=0.1: PC=0.9172(1), β/v=0.252(9), z=1.579(11), =1.11(4), m=1.173(4)
Resumo:
This work proposes a formulation for optimization of 2D-structure layouts submitted to mechanic and thermal shipments and applied an h-adaptive filter process which conduced to computational low spend and high definition structural layouts. The main goal of the formulation is to minimize the structure mass submitted to an effective state of stress of von Mises, with stability and lateral restriction variants. A criterion of global measurement was used for intents a parametric condition of stress fields. To avoid singularity problems was considerate a release on the stress restriction. On the optimization was used a material approach where the homogenized constructive equation was function of the material relative density. The intermediary density effective properties were represented for a SIMP-type artificial model. The problem was simplified by use of the method of finite elements of Galerkin using triangles with linear Lagrangian basis. On the solution of the optimization problem, was applied the augmented Lagrangian Method, that consists on minimum problem sequence solution with box-type restrictions, resolved by a 2nd orderprojection method which uses the method of the quasi-Newton without memory, during the problem process solution. This process reduces computational expends showing be more effective and solid. The results materialize more refined layouts with accurate topologic and shape of structure definitions. On the other hand formulation of mass minimization with global stress criterion provides to modeling ready structural layouts, with violation of the criterion of homogeneous distributed stress
Percolação convencional, percolação correlacionada e percolação por invasão num suporte multifractal
Resumo:
In this work we have studied the problem of percolation in a multifractal geometric support, in its different versions, and we have analysed the conection between this problem and the standard percolation and also the connection with the critical phenomena formalism. The projection of the multifractal structure into the subjacent regular lattice allows to map the problem of random percolation in the multifractal lattice into the problem of correlated percolation in the regular lattice. Also we have investigated the critical behavior of the invasion percolation model in this type of environment. We have discussed get the finite size effects
Resumo:
The new technique for automatic search of the order parameters and critical properties is applied to several well-know physical systems, testing the efficiency of such a procedure, in order to apply it for complex systems in general. The automatic-search method is combined with Monte Carlo simulations, which makes use of a given dynamical rule for the time evolution of the system. In the problems inves¬tigated, the Metropolis and Glauber dynamics produced essentially equivalent results. We present a brief introduction to critical phenomena and phase transitions. We describe the automatic-search method and discuss some previous works, where the method has been applied successfully. We apply the method for the ferromagnetic fsing model, computing the critical fron¬tiers and the magnetization exponent (3 for several geometric lattices. We also apply the method for the site-diluted ferromagnetic Ising model on a square lattice, computing its critical frontier, as well as the magnetization exponent f3 and the susceptibility exponent 7. We verify that the universality class of the system remains unchanged when the site dilution is introduced. We study the problem of long-range bond percolation in a diluted linear chain and discuss the non-extensivity questions inherent to long-range-interaction systems. Finally we present our conclusions and possible extensions of this work
Resumo:
This work presents a algorithmic study of Multicast Packing Problem considering a multiobjective approach. The first step realized was an extensive review about the problem. This review serverd as a reference point for the definition of the multiobjective mathematical model. Then, the instances used in the experimentation process were defined, this instances were created based on the main caracteristics from literature. Since both mathematical model and the instances were definined, then several algoritms were created. The algorithms were based on the classical approaches to multiobjective optimization: NSGA2 (3 versions), SPEA2 (3 versions). In addition, the GRASP procedures were adapted to work with multiples objectives, two vesions were created. These algorithms were composed by three recombination operators(C1, C2 e C3), two operator for build solution, a mutation operator and a local search procedure. Finally, a long experimentation process was performed. This process has three stages: the first consisted of adjusting the parameters; the second was perfomed to indentify the best version for each algorithm. After, the best versions for each algorithm were compared in order to identify the best algorithm among all. The algorithms were evaluated based on quality indicators and Hypervolume Multiplicative Epsilon