21 resultados para Locomotor apparel

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The locomotion is one of the most important capabilities developed by the animals, whose improvement is dependent on several neural centers, including the spinal cord. This activity promotes a lot of spinal modifications that enable it to adapt and improve their connections. This study aimed to observe the morphological changes occurring in the spinal cord after locomotor training in intact rats. For that we used male Wistar rats, which were submitted to locomotor training in wheel activity in protocols 1, 3 and 7 days (30min/day), and the results were compared to a control group not subjected to exercise. Coronal sections of 40 μm of the lumbosacral spinal cord were subjected to immunohistochemical techniques anti-Egr1, anti-NMDA and anti-SP, to characterize the spinal plasticity related to these substances. Egr1-immunoreactive cells were increased in all laminas, essentially in those more intensely activated by locomotion, laminas IV-X levels L4-S3. All observed sections expressed NMDA-immunoreactivity. Analysis of SP in the spinal dorsal horn resulted no significant variations of this neuropeptide related to locomotion. The results suggest that locomotor training provides synaptic plasticity similar to LTP in all laminas of the lumbosacral spinal cord, in different intensities. However, the SP appears do not participate of this process in the spinal dorsal horn. This work will contribute for consolidating and characterization of synaptic plasticity in the spinal cord

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Textile industry deals with a high diversity of processes and generation of wastewaters with a high content of pollutant material. Before being disposed of in water bodies, a pre-treatment of the effluent is carried out, which is sometimes ineffective. In order to be properly treated, physical and chemical properties of the effluent must be known, as well as the pollutant agents that might be present in it. This has turned out to be a great problem in the textile industry, for there is a variety of processes and the pollutant load is very diversified. The characterization of the effluent allows the identification of most critical points and, as a consequence, the most appropriate treatment procedure to be employed, may be chosen. This study presents the results obtained after characterizing the effluent of a textile industry that comprises knitting, dyeing and apparel sections, processing mainly polyester/cotton articles. In this work, twenty samples of the effluent were collected, and related to the changes in production. From the results, a statistical evaluation was applied, determined in function of the rate of flow. The following properties and pollutants agents were quantitatively analysed: temperature; pH; sulfides; chlorine; alcalinity; chlorides; cianides; phenols; color; COD (Chemical Oxygen Demand); TOC (Total Organic Carbon); oil and grease; total, fixed and volatile solids; dissolved, fixed and volatile solids; suspended, fixed and volatile solids; setteable solids and heavy metals such as cadmium, copper, lead, chromium, tin, iron, zinc and nickel. Analyses were carried out according to ABNT NBR 13402 norm, based upon Standard Methods for the Examination of Water and Wastewater. As a consequence, a global treatment proposal is presented, involving clean production practices as contaminant load reducer, followed by conventional (biological) treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bipolar disorder has been growing in several countries. It is a disease with high mortality and has been responsible by the social isolation of the patients. Bipolar patients have alterations in circadian timing system, showing a phase shift in various physiological variables. There are several arguments demonstrating alterations in circadian rhythms may be part of the bipolar disorder pathophysiology. Given the necessity for further elucidation, the goal of this study was to validate the forced desynchronization protocol as an animal model for bipolar disorder. To do this, Wistar rats were submitted to a forced desynchronization protocol which consists in a symmetrical light dark cycle with 22h. Under this protocol, rats dissociate the locomotor activity rhythm into two components: one synchronized to the light / dark cycle with 22h, and another component with period longer than 24 hours following the animal endogenous period. These rhythms with different periods sometimes there is coincidence, which we named CAP (Coincidence Active Phase) and the opposite phase, non-coincidence, called NCAP (Non-Concidence Active Phase). The hypothesis is that in CAP animals present a mania-like behavior and animals in NCAP depressive-like behavior. We found some evidence described in detail throughout this thesis. In sum, the animals under forced desynchronization protocol were more stressed, showed an increase in stereotypic behaviors such as grooming and reduction in other behaviors such as risk assessment and vertical exploration when compared to the control group. The CAP animals showed increased locomotor activity, especially during the dark phase when compared to controls (rats under T24) and less depressive behavior in the forced swim test. The animals in NCAP showed a higher anxiety in elevated plus maze, but they don t have ahnedonia. The animals under dissociation have more labeled 5HT1A cells at the amygdala area, which appoint that they have more amygdala inhibition. Taking these data together, we could partially validated the forced desynchronization protocol as an animal model for mood oscillations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caffeine is considered the most consumed psychostimulant in the world, presenting several central and peripheral effects. In the Central Nervous System the major effect occur by its antagonistic activity at the A1 and A2a subtypes of the adenosine receptors. These receptors are responsible for the slow-wave sleep induction, and their binding, caused by the consumption of foods and beverages that contain caffeine, cause behaviors like increase of alertness, mood and locomotion. The effects of caffeine on memory are still discussed because of the diversity of experimental protocols. Also, it does not have the same effects on all stages of the processing of memory - acquisition, consolidation and recall. Thus, using the marmoset (Callitrhix jacchus) as subject, we aim to evaluate the effects of caffeine on the memory of this primate through the conditioned place preference paradigm, where the animal selects a context by presence of food. This cognitive task consists of five phases. The first phase was two sessions of pre-exposure, in which they were evaluated for preference for any compartment of the apparatus. Then, we proceeded the training, conditioning the animals to the food-present context for 8 days. Then, there was administration of caffeine or placebo (10mg/kg) for 8 consecutive days, during the pre-sleep phase, where the 20 animals were distributed in two groups: placebo and repeated. The forth phase was one day of retraining, a re-exposure of the apparatus to the marmosets followed by the administration of caffeine (for the repeated group and a new group called abstinence) or placebo (for placebo and abstinence groups). Finally, was the test where we evaluated if the subjects learned where the food was present. Moreover, in this work we evaluate the existence of differences between females and males on the task, and the locomotor activity for the experimental groups. The results showed that in the pre-exposure phase the animals were habituated on the apparatus and did not present differences for any contexts. In training, they were able to learn the conditioning task, independent of gender. For the retraining, the two groups exhibited more interactions in rewarded context than that in non-rewarded context. Nevertheless, in the locomotor activity, the repeated group moved similarly in contact with the apparatus and outside of it. In the other hand, the animals of the placebo group moved more when in contact with the apparatus. In the test phase, the marmosets under influence of caffeine presented an increase in the locomotor activity when compared with the placebo group, corroborating works that show this increase in locomotion. In the learning evaluation, the continuous and abstinence groups had a bad performance in the task in relation to the placebo and acute groups. This suggests that the prolonged administration of caffeine disrupts the memories because it affected sleep, which is largely responsible offline processing of memories

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lost of phase relationship between rhythms and behaviour can, and often do, undesirable consequences. The purpose os study was to ascertain the effect of circadian desynchronization in T22 about metabolism of wistar rats. The subjects consisted of 24 animals separated in two groups: control (n=12) T24 with 8 weeks of aged and experimental group (n=12) T22, also with 8 weeks of aged. Both the groups were subject to register of locomotor actitivity, body temperature, body weight and food intake in all the experiment. And more, both the groups were subject to food deprivation, running in treadmill and forced swimming. The results show rhythm of locomotor activity and body temperature desynchronized. Dont exist diference in body weight between both the groups (T24 = 386,75±40,78g e T22 380,83±44,28g) . However, the food intake was different between the phases, light and dark, in intergroup and intragroup. The body temperature was not different in food deprivation. The same ocurred for running in treadmill and forced swimming. Since similar alterations occur in shift workers, it is proposed that the experimental paradigm presented in this manuscript is a useful model of shift work. That is, alterations in activity/rest cycles and consummatory behavior can affect the health of organism

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main environmental cues for the adjustment of temporal organization of the animals is the light-dark cycle (LD), which undergoes changes in phase duration throughout the seasons. Photoperiod signaling by melatonin in mammals allows behavioral changes along the year, as in the activity-rest cycle, in mood states and in cognitive performance. The aim of this study was to investigate if common marmoset (Callithrix jacchus) exhibits behavioral changes under short and long photoperiods in a 24h cycle, assessing their individual behaviors, vocal repertoire, exploratory activity (EA), recognition memory (RM) and the circadian rhythm of locomotor activity (CRA). Eight adult marmosets were exposed to a light-dark cycle of 12:12; LD 08:16; LD 12:12 and LD 16:08, sequentially, for four weeks in each condition. Locomotor activity was recorded 24h/day by passive infrared motion detectors above the individual cages. A video camera system was programmed to record each animal, twice a week, on the first two light hours. From the videos, frequency of behaviors was registered as anxiety-like, grooming, alert, hanging position, staying in nest box and feeding using continuous focal animal sampling method. Simultaneously, the calls emitted in the experimental room were recorded by a single microphone centrally located and categorized as affiliative (whirr, chirp), contact (phee), long distance (loud shrill), agonistic (twitter) and alarm (tsik, seep, see). EA was assessed on the third hour after lights onset on the last week of each condition. In a first session, marmosets were exposed to one unfamiliar object during 15 min and 24h later, on the second session, a novel object was added to evaluate RM. Results showed that long days caused a decreased of amplitude and period variance of the CRA, but not short days. Short days decreased the total daily activity and active phase duration. On long days, active phase duration increased due to an advance of activity onset in relation to symmetric days. However, not all subjects started the activity earlier on long days. The activity offset was similar to symmetric days for the majority of marmosets. Results of EA showed that RM was not affected by short or long days, and that the marmosets exhibited a decreased in duration of EA on long days. Frequency and type of calls and frequency of anxiety-like behaviors, staying in nest box and grooming were lower on the first two light hours on long days. Considering the whole active phase of marmosets as we elucidate the results of vocalizations and behaviors, it is possible that these changes in the first two light hours are due to the shifting of temporal distribution of marmoset activities, since some animals did not advance the activity onset on long days. Consequently, the marmosets mean decreased because the sampling was not possible. In conclusion, marmosets synchronized the CRA to the tested photoperiods and as the phase angle varied a lot among marmosets it is suggested that they can use different strategies. Also, long days had an effect on activity-rest cycle and exploratory behaviors

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptide S (NPS) is an endogenous 20-aminoacid peptide which binds a G protein-coupled receptor named NPSR. This peptidergic system is involved in the modulation of several biological functions, such as locomotion, anxiety, nociception, food intake and motivational behaviors. Studies have shown the participation of NPSR receptors in mediating the hyperlocomotor effects of NPS. A growing body of evidence suggests the participation of adenosinergic, dopaminergic and CRF systems on the hyperlocomotor effects of NPS. Considering that little is known about the role of dopaminergic system in mediating NPS-induced hyperlocomotion, the present study aims to investigate the locomotor actions of intracerebroventricular (icv) NPS in mice pretreated with α-metil-p-tirosine (AMPT, inhibitor of dopamine synthesis), reserpine (inhibitor of dopamine vesicle storage) or sulpiride (D2 receptor antagonist) in the open field test. A distinct group of animals received the same pretreatments described above (AMPT, reserpine or sulpiride) and the hyperlocomotor effects of methylphenidate (dopamine reuptake inhibitor) were investigated in the open field. NPS and methylphenidate increased the mouse locomotor activity. AMPT per se did not change the locomotion of the animals, but it partially reduced the hyperlocomotion of methylphenidate. The pretreatment with AMPT did not affect the psychostimulant effects of NPS. Both reserpine and sulpiride inhibited the stimulatory actions of NPS and methylphenidate. These findings show that the hyperlocomotor effects of methylphenidate, but not NPS, were affected by the pretreatment with AMPT. Furthermore, methylphenidate- and NPS-induced hyperlocomotion was impaired by reserpine and sulpiride pretreatments. Together, data suggests that NPS can increase locomotion even when the synthesis of catecholamines was impaired. Additionally, the hyperlocomotor effects of NPS and methylphenidate depend on monoamines vesicular storaged, mainly dopamine, and on the activation of D2 receptors. The psychostimulant effects of NPS via activation of dopaminergic system display clinical significance on the treatment of diseases which involves dopaminergic pathways, such as Parkinson s disease and drug addiction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physiologist H. Selye defined stress as the nonspecific response of the body to any factors that endanger homeostasis (balance of internal environment) of the individual. These factors, agents stressors, are able to activate the Hypothalamic-Pituitary-Adrenal (HPA) axis, thus resulting in the physiological responses to stress by the release of glucocorticoids that leads to psychophysiological changes, including effects on cognitive functions such as learning and memory. When this axis is acutely stimulated occurs a repertoire of behavioral and physiological changes can be adaptive to the individual. Notwithstanding, when the HPA axis is chronically stimulated, changes may favor the development of, such as anxiety disorders. Some drugs used in the clinic for the treatment of anxiety disorders these can exert effects on cognitive function, on the HPA axis and on the anxiety. In this context, the aim of our study was to investigate the effects of administration i.p. acute of diazepam (DZP, 2 mg/kg), buspirone (BUS, 3 mg/kg), mirtazapine (MIR, 10 mg/kg) and fluoxetine (FLU, 10 mg/kg) in male mice submitted to acute restraint stress, and evaluated using plus-maze discriminative avoidance task (PMDAT), which simultaneously evaluates parameters such as learning, memory and anxiety. Our results demonstrated that (1) the administration of DZP and BUS, but not FLU, promoted anxiolytic effects in animals; (2) administration mirtazapine caused sedative effect to animals; (3) in the training session, the animals treated with BUS, MIR and FLU learned the task, on the other hand DZP group showed impairment in learning; (4) in the test session, animals treated with DZP, BUS, and MIR showed deficits in relation to discrimination between the enclosed arms, aversive versus non-aversive arm, demonstrating an impairment in memory, however, animals treated with FLU showed no interference in the retrieval of this memory; (5) acute stress did not interfere in locomotor activity, anxiety, or learning on the learning task, but induced impairment in retrieval memory, and the group treated with FLU did not demonstrated this deficit of memory . These results suggest that acute administration of drugs with anxiolytic and antidepressant activity does not interfere with the learning process this aversive task, but impair its retrieval, as well as the acute restraint stress. However, the antidepressant fluoxetine was able to reverse memory deficits promoted by acute stress, which may suggest that modulation, even acutely serotonergic neurotransmission, by selectively inhibiting the reuptake of this neurotransmitter, interferes on the process of retrieval of an aversive memory

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium (Li) is the first choice to treat bipolar disorder, a psychiatric illness characterized by mood oscillations between mania and depression. However, studies have demonstrated that this drug might influence mnemonic process due to its neuroprotector, antiapoptotic and neurogenic effects. The use of Li in the treatment of cognitive deficits caused by brain injury or neurodegenerative disorders have been widely studied, and this drug shows to be effective in preventing or even alleviating the memory impairment. The effects of Li on anxiety and depression are controversial and the relationship of the effects of lithium on memory, anxiety and depression remain unknown. In this context, this study aims to: evaluate the effects of acute and chronic administration of lithium carbonate in aversive memory and anxiety, simultaneously, using the plus maze discriminative avoidance task (PMDAT); test the antidepressant effect of the drug through the forced swimming test (FS) and analyze brainderived neurotrophic factor (BDNF) expression in structures related to memory and emotion. To evaluation of the acute effects, male Wistar rats were submitted to i.p. administration of lithium carbonate (50, 100 or 200 mg/kg) one hour before the training session (PMDAT) or lithium carbonate (50 or 100 mg/kg) one hour before the test session (FS). To evaluation of the chronic effects, the doses administered were 50 or 100 mg/kg or vehicle once a day for 21 days before the beginning of behavioral tasks (PMDAT and FS). Afterwards, the animals were euthanized and their brains removed and submitted to immunohistochemistry procedure to quantify BDNF. The animals that received acute treatment with 100 and 200 mg/kg of Li did not discriminated between the enclosed arms (aversive and non-aversive) in the training session of PMDAT, showing that these animal did not learned the task. This lack of discrimination was also observed in the test session, showing that the animals did not recall the aversive task. We also observed an increased exploration of the open arms of these same groups, indicating an anxiolytic effect. The same groups showed a reduction of locomotor activity, however, this effect does not seem to be related with the anxiolytic effect of the drug. Chronic treatment with Li did not promote alterations on learning or memory processes. Nevertheless, we observed a reduction of open arms exploration by animals treated with 50 mg/kg when compared to the other groups, showing an anxiogenic effect caused by this dose. This effect it is not related to locomotor alterations since there were no alterations in these parameters. Both acute and chronic treatment were ineffective in the FS. Chronic treatment with lithium was not able to modify BDNF expression in hippocampus, amygdala and pre-frontal cortex. These results suggest that acute administration of lithium promote impairments on learning in an aversive task, blocking the occurrence of memory consolidation and retrieval. The reduction of anxiety following acute treatment may have prevented the learning of the aversive task, as it has been found that optimum levels of anxiety are necessary for the occurrence of learning with emotional context. With continued, treatment the animals recover the ability to learn and recall the task. Indeed, they do not show differences in relation to control group, and the lack of alterations on BDNF expression corroborates this result. Possibly, the regimen of treatment used was not able to promote cognitive improvement. Li showed acute anxiolytic effect, however chronic administration 4 promoted the opposite effect. More studies are necessary to clarify the potential beneficial effect of Li on aversive memory

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The circadian behavior associated with the 24 hours light-dark (LD) cycle (T24) is due to a circadian clock , which in mammals is located in the hypothalamic suprachiasmatic nucleus (SCN). Under experimental conditions in which rats are espoused to a symmetric LD 22h cycle (T22) the two SCN regions, ventrolateral (vl) and dorsomedial (dm), can be functionally isolated, suggesting that each region regulates distinct physiological and behavioral components. The vl region regulates the locomotor activity and slow wave sleep (SWS) rhythms, while the dm region assures the body temperature and paradoxical sleep (PS) rhythms regulation. This research aimed to deepen the knowledge on the functional properties of circadian rhythmicity, specifically about the internal desynchronization process, and its consequences to locomotor activity and body temperature rhythms as well as to the sleep-wake cycle pattern in rats. We applied infrared motion sensors, implanted body temperature sensors and a telemetry system to record electrocorticogram (ECoG) and electromyogram (EMG) in two rat groups. The control group under 24h period LD cycle (T24: 12hL-12hD) to the baseline record and the experimental group under 22h period LD cycle (T22: 11hL- 11hD), in which is known to occur the uncoupling process of the circadian locomotor activity rhythm where the animals show two distinct locomotor activity rhythms: one synchronized to the external LD cycle, and another expressed in free running course, with period greater than 24h. As a result of 22h cycles, characteristic locomotor activity moment appear, that are coincidence moments (T22C) and non coincidence moments (T22NC) which were the main focus or our study. Our results show an increase in locomotor activity, especially in coincidence moments, and the inversion of locomotor activity, body temperature, and sleep-wake cycle patterns in non coincidence moments. We can also observe the increase in SWS and decrease in PS, both in coincidence and non coincidence moments. Probably the increases in locomotor activity as a way to promote the coupling between circadian oscillators generate an increased homeostatic pressure and thus increase SWS, promoting the decreasing in PS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bipolar disorder is a chronic psychopathology that reaches from 1 to 4% of the world population. This mood disorder is characterized by cyclical mood changes, in which an individual alternates between states of depression and mania. Mania is described in the literature as an abnormal state of exacerbation of humor, in which the subject presents an expansive, euphoric behavior, but with increased irritability, psychomotor agitation and a feeling of invincibility, which will contribute to risks exposure. The treatment of this psychopathology is complex and it is not effective in all cases, and it evokes many side effects. In this respect, the system of Nociceptin/Orphanin FQ (N/OFQ) can be studied as a possible therapeutic target for the treatment of bipolar disorder, due to its modulatory role on monoaminergic systems and on mood. This study aims to investigate the effect of NOP receptor ligands in an animal model of mania induced by methylphenidate. To this aim, locomotor activity was assessed in an open field, in mice treated with methylphenidate (10 mg/kg, sc, 15 min). Valproate (300 mg / kg, ip, 30 min), standard treatment of mania, prevented methylphenidate-induced hyperlocomotion. The acute treatment with the antagonist of NOP receptor UFP-101 (1-10 nmol, icv, 5 min) per se did not affect the spontaneous locomotion of mice, but it was able of attenuating hyperlocomotion induced by methylphenidate. The acute treatment with N/OFQ (1 and 0.1 nmol, icv, 5 min) did not alter the distance moved, but when tested at a dose of 1 ηmol, N/OFQ slightly reduced methylphenidate-induced hiperlocomotion. In conclusion, the administration of UFP-101 and N/OFQ produced antimanic-like actions. Furthermore, these data suggest that the system of N/OFQ performs a complex modulation of voluntary movement, and consequently on dopaminergic neurotransmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson disease (PD) is associated with motor symptoms and dopaminergic cell loss in the nigrostriatal pathway. Alpha-synuclein is the major component of the Lewy bodies, the biological hallmarks of disease, and has been associated with familial cases of PD. Recently, the spinal cord stimulation (SCS) showed to be effective to alleviate the Parkinson symptoms in animal models and human patients. In this project, we characterized the motor and electrophysiological effects of alpha-synuclein overexpression in the substantia nigra of rats. We further investigated the effects of spinal electrical stimulation, AMPT and L-dopa administration in this model. Method: Sprague-Dawley rats were injected with empty viral vector or the vector carrying the gene for alpha-synuclein in the substantia nigra, and were tested weekly for 10 weeks in the open field and cylinder tests. A separated group of animals implanted with bilateral electrode arrays in the motor cortex and the striatum were recorded in the open field, during the SCS sessions and the pharmacological experiments. Results: Alpha-synuclein expression resulted in motor asymmetry, observed as the reduction in use of contralateral forepaw in the cylinder test. Animals showed an increase of local field potential activity in beta band three and four weeks after the virus injection, that was not evident after the 5th week. AMPT resulted in a sever parkinsonian state, with reduction in the locomotor activity and significant peak of oscillatory activity in cortex and striatum. SCS was effective to alleviate the motor asymmetry at long term, but did not reduce the corticostriatal low frequency oscillations observed 24 hs after the AMPT administration. These oscillations were attenuated by L-dopa that, even as SCS, was not effective to restore the locomotor activity during the severe dopaminergic depletion period. Discussion: The alpha-synuclein model reproduces the motor impairment and the progressive neurodegenerative process of PD. We demonstrated, by the first time, that this model also presents the increase in low frequency oscillatory activity in the corticostriatal circuit, compatible with parkinsonian condition; and that SCS has a therapeutic effect on motor symptom of this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caffeine is the most consumed psychostimulant, with effects on attention, memory, and arousal. But when this substance is ingested near to bedtime there is a decrease on sleep, interfering on mnemonic processes. So, our ain was to investigate how the caffeine ingested near to sleep onset acts on sleep and memory in marmosets. We used 16 adult marmosets, single housed, in a 12:12h light-dark cycle. For registering locomotor activity were used two kinds of sensors. The gyroscope sensor registers activity each 30 sec and detects motion with good accuracy. Because of this we used this sensor for detecting nocturnal activity. The second sensor was based on infrared and accumulates activity each 5 min and it’s not able to detect nocturnal activity, just diurnal activity. We also used camera for registering Rest phase of one marmoset. For the cognitive task, the animals needed to learn a rewarded context (CR) when compared to a non-rewarded context CNR). This experiment comprises 5 phases: 1) Two days of habituation to apparatus; 2)Training for 8 days; 3) oral administration of caffeine (10 mg/kg) or placebo administration ±1h before sleep onset, for 8 days, with marmosets receiving placebo or caffeine; 4) retraining to apparatus and after that, placebo administration (placebo group-GP), or caffeine administration (with continuous group-GC and acute groupGA); 5) Test, for evaluating learning to CR. The sessions were filmed and each one had 8 min of duration. At 7 am started the habituation, training and test sessions, and at 3:15 pm started retraining. The results for gyroscope sensor showed that there was coincidence of 68,57% with nocturnal register of the cameras. Then, the gyroscope sensors detected nocturnal activity for all experimental groups Moreover, when compared sensor gyroscope with sensor based on infrared, was observed that both sensor presented similarity on patterns of activity curve. When we observed the effects of caffeine on Activity-Rest Cycle in GP, GA and GC, is possible to see that that gyroscope sensors and based on infrared presented only intra group differences. As behavioral results, the marmosets learned to discriminate CR when compared to CNR. Moreover, GP presented deficits on memory recall during the test, and GA increased the memory recall, when both were compared to GP. We concluded that the marmosets were able to learning the cognitive task and that the caffeine ingested near to sleep onset acts modulating memory in these animals. Moreover the gyroscope sensor can be used as alternative tool for investigating nocturnal activity. Then, the utilization of this non-invasive device allows marmosets exhibit their behavior within the laboratory conditions as natural as possible.