19 resultados para Elevated plus maze test

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anxiety is an emotional phenomenon, and normally it is interpreted as an adaptative behavior front to adversities. In its pathological form, anxiety can severely affect aspects related to the personal and professional life. Studies have shown a close relationship between anxiety disorders and aversive memory processing. Considering that the pharmacotherapy of anxiety disorders is still limited, innovative anxiolytic agents are needed. In this regard, neuropeptides systems are interesting therapeutic targets to the treatment of psychopathologies. Neuropeptide S (NPS), a 20-aminoacid peptide, is the endogenous ligand of a G-protein coupled receptor (NPSR), which has been reported to evoke hyperlocomotion, awakefull states, besides anxiolysis and memory improvements in rodents. This study aimed to investigate the effects of biperiden (BPR; an amnesic drug), diazepam (DZP; an anxiolytic drug) and NPS at three distinct times: pre-training, post-training, and pre-test, in order to assess anxiety and memory process in the same animal model. The elevated Tmaze (ETM) is an apparatus derived from the elevated plus-maze test, which consists of one enclosed and two open arms. The procedure is based on the avoidance of open spaces learned during training session, in which mice were exposed to the enclosed arm as many times as needed to stay 300 s. In the test session, memory is assessed by re-exposing the mouse to the enclosed arm and the latency to enter an open arm was recorded. When injected pre-training, BPR (1 mg/kg) impaired learning and memory processing; DZP (1 and 2 mg/kg) evoked anxiolysis, but only at the dose of 2 mg/kg impaired memory; and NPS 0.1 nmol induced anxiolysis without affecting memory. Post-training injection of DZP (2 mg/kg) or BPR (1 and 3 mg/kg) did not affect memory consolidation, while the post-trainning administration of NPS 1 nmol, but not 0.1 nmol, improved memory in mice. Indeed, pre-trainning administration of NPS 1 nmol did not prevent memory impairment elicited by BPR (2 mg/kg, injected before training). In the open field test, BPR 1 mg/kg and NPS 1 nmol induced hyperlocomotion in mice. In conclusion, the proposed ETM task is practical for the detection of the anxiolytic and amnesic effects of drugs. The anxiolytic and memory enhancement effects of NPS were detected in the ETM task, and reinforce the role of NPS system as an interesting therapeutic target to the treatment of anxiety disorders

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bipolar disorder has been growing in several countries. It is a disease with high mortality and has been responsible by the social isolation of the patients. Bipolar patients have alterations in circadian timing system, showing a phase shift in various physiological variables. There are several arguments demonstrating alterations in circadian rhythms may be part of the bipolar disorder pathophysiology. Given the necessity for further elucidation, the goal of this study was to validate the forced desynchronization protocol as an animal model for bipolar disorder. To do this, Wistar rats were submitted to a forced desynchronization protocol which consists in a symmetrical light dark cycle with 22h. Under this protocol, rats dissociate the locomotor activity rhythm into two components: one synchronized to the light / dark cycle with 22h, and another component with period longer than 24 hours following the animal endogenous period. These rhythms with different periods sometimes there is coincidence, which we named CAP (Coincidence Active Phase) and the opposite phase, non-coincidence, called NCAP (Non-Concidence Active Phase). The hypothesis is that in CAP animals present a mania-like behavior and animals in NCAP depressive-like behavior. We found some evidence described in detail throughout this thesis. In sum, the animals under forced desynchronization protocol were more stressed, showed an increase in stereotypic behaviors such as grooming and reduction in other behaviors such as risk assessment and vertical exploration when compared to the control group. The CAP animals showed increased locomotor activity, especially during the dark phase when compared to controls (rats under T24) and less depressive behavior in the forced swim test. The animals in NCAP showed a higher anxiety in elevated plus maze, but they don t have ahnedonia. The animals under dissociation have more labeled 5HT1A cells at the amygdala area, which appoint that they have more amygdala inhibition. Taking these data together, we could partially validated the forced desynchronization protocol as an animal model for mood oscillations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plus-maze discriminative avoidance paradigm has been used to study the relationship between aversive memory and anxiety. The present study aims to verify if the elevated plus-maze can provide information about appetitive memory and anxiety, through a task motivated by food reward. Animals were allowed to explore an elevated plus-maze and received reinforcement in one of the enclosed arms. In a test session performed 24h later, in the absence of reward, rats showed preference for the previously rewarded enclosed arm over the neutral enclosed arm. The administration of diazepam and pentylenetetrazole before training induced, respectively, anxiolytic and anxiogenic effects (as evaluated by open-arm exploration). Both drugs induced amnestic effects, i.e., lack of preference for the rewarded arm in the test session. The results suggest that appetitive memory can be influenced by anxiety levels as well. The plus-maze appetitive discrimination task seems to be a useful model to investigate the relationship between memory and anxiety

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanol-dependent individuals who reduce or discontinue its use may present Alcohol Withdrawal Syndrome, which is characterized by unpleasant signs and symptoms, such as anxiety, that may trigger relapses. Ethanol, a psychotropic drug, is able to promote behavioral and neurophysiological changes, acting on different neurotransmitter systems, including the serotonergic, which has also been directly associated with aversive states, including anxiety. This study aimed to investigate the participation of type 7 serotonin receptor (5-HT7) of the dorsal periaqueductal gray (DPAG) on basal experimental anxiety and that caused by ethanol withdrawal. For this, 75-100 days old Wistar rats were subjected to two experiments. On the first one, animals underwent stereotactic surgery for implantation of guide cannulas used for administration of the drug directly into the DPAG. After seven days, the animals received doses of 2.5; 5 and 10 nmols of type 7 receptor antagonist SB269970 (SB) or vehicle intra-DPAG and, ten minutes after, they were exposed to elevated plus maze (EPM). In the following day, the animals were submitted to the same treatment and tested in the open field (OF). In the second experiment, animals received increasing concentrations (2%, 4%, 6%) of ethanol as the only source of liquid diet or water (control group), both with free access to chow. Seventy two hours and ninety six hours after the ethanol withdrawal, animals received SB (2.5 and 5.0 nmols) intraDPAG ten minutes before the test in the LCE and OF, respectively. In experiment 1, the dose of antagonist 10 nmols was able of reversing the anxiety generated by EPM. In the experiment 2, ineffective SB doses on the LCE (2.5 and 5.0 nmol) were not able to reverse the anxiety caused by the ethanol withdrawal in the EPM, although the dose of 2.5 nmols of SB has reversed its hipolocomotor effect in this test. This result suggests that the 5-HT7 receptor is involved in the modulation of the basal experimental anxiety in rats, but not in the anxiety caused by ethanol withdrawal in the DPAG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanol withdrawn individuals present a wealth of signs and symptoms, some of them related with anxiety. To better understand brain areas involved in anxiety caused by ethanol abstinence, preclinical studies have been employing models of ethanol consumption followed by withdrawal in rodents submitted to behavioral tests of anxiety, such as the elevated plus-maze. The aim of this study was to investigate if short- or long-term ethanol withdrawal could alter both anxiety-related behaviors in the elevated plus-maze (EPM) and open field tests and the number of serotonin immunorreactive cels in the dorsal raphe nucleus, a midbrain area associated with anxiety. Female Wistar rats (90 days old) were submitted to increasing concentrations of ethanol (2% for 3 days, 4% for 3 days and 6% for 15 days) as the only source of liquid diet and the control group received water ad libitum. Both groups received food ad libitum. In the behavioral experiments, on 21st day of consumption, ethanol was substituted by water (withdrawal) and 72 h or 21 days after withdrawal animals were submitted to the EPM, where it was evaluated the percentage of time and entries in the open arms and the entries in the enclosed arms during 5 minutes. Twenty and four hours after testing in the EPM, animals were submitted to the open field test for 15 minutes, where the distance traveled by the animals was observed along this period. During the first 5 minutes, the distance traveled, entries and time spent in the center of the test were analyzed. In the immunohistochemistry study, animals were submitted to 21 days of consumption of ethanol followed or not by 72 hours and 21 days of withdrawal previously perfusion, brain tissue preparation and quantification of serotonin dyed cells in the dorsal and caudal portions in the dorsal raphe nucleus. Behavioral data showed that both short- and long-term ethanol withdrawals reduced the open arms exploration in the EPM. In the open field test there were no locomotor activity changes during the total 15 minutes; however, longterm ethanol withdrawal reduced the exploration in the center of the open field during the first 5 minutes. In the immunohistochemistry step, there were no differences, when short- and long-term withdrawn groups were compared with control group; nevertheless, the chronic consumption of ethanol decreased the number of serotonergic immunorreactive cells in the dorsal part of dorsal raphe nucleus. Taken together, results here obtained suggest that both short- and long-term ethanol withdrawals promoted an anxiogenic-like effect that was not related with changes in the serotonin immunorreactivity in the dorsal and caudal parts of the dorsal raphe nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: This study aimed to investigate the effects of the two peptide NOP partial agonists (UFP-113 and [F/G]N/OFQ(1-13)NH2) and the non peptide NOP partial agonist (AT-090) in the mouse emotional behavior as well as in the intracellular transduction pathways following the receptor binding. Methods: Male Swiss or CD-1 mice were used in this study together with NOP(+/+) and NOP(-/-) mice. The elevated plus maze (EPM) was used to evaluate the effects of compounds on anxiety-like behaviors. Diazepam and the NOP agonists, N/OFQ and Ro 65-6570, were used as positive controls in the EPM. NOP(+/+) and NOP(-/-) mice were used to evaluate the selectivity of those compounds that induced anxiolytic-like behaviors. The forced swim test (FST) was used to evaluate the effects of compounds on depressive-like behaviors. Nortriptyline and the NOP antagonists, UFP-101 and SB-612111, were used as positive controls in the FST. The effects of N/OFQ, UFP-101, SB-612111, UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090 were assessed in the methylphenidate-induced hyperlocomotion (MIH) test; in this assay valproate was used as positive control. The G protein and β-arrestin 2 transduction pathways of NOP receptor agonists (N/OFQ and Ro 65-6570), antagonist (UFP-101), and partial agonists (UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090) were also evaluated using an innovative assay that measures a bioluminescence resonance energy transfer process. For this, cell lines permanently co-expressing the NOP receptor coupled to luciferase (energy donor), and green fluorescent protein (energy acceptor) coupled to one of the effector proteins (G protein or β-arrestin 2) were used. Results: Diazepam (1 mg/kg), N/OFQ (1 nmol), Ro 65-6570 (0.1 mg/kg), and AT-090 (0.01 mg/kg) induced anxiolytic-like effect in mice in the EPM. The effects of Ro 65-6570 and AT-090 were selective to NOP receptor. UFP-113 (0.01-1 nmol) and [F/G]N/OFQ(1-13)NH2 (0.1-3 nmol) were inactive in the EPM. In the FST, nortriptyline (30 mg/kg), UFP-101 (10 nmol), SB-612111 (10 mg/kg), UFP-113 (0.01 and 0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (0.3 and 1 nmol) induced antidepressant-like effects, while AT-090 (0.001-0.1 mg/kg) was inactive in this assay. The effects of UFP-113 and [F/G]N/OFQ(1-13)NH2 were selective to NOP receptor. Valproate (400 mg/kg) counteracted methylphenidate (MPH, 10 mg/kg)-induced hyperlocomotion in mice in the open field. N/OFQ (1 nmol), UFP-113 (0.01-0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (1 nmol) were also able to reduce the MPH-induced hyperlocomotion, without changing the locomotor activity per se. The effect of UFP-113 was selective to NOP receptor. The UFP-101 (10 nmol), SB-612111 (10 mg/kg), and AT-090 (0.001-0.03 mg/kg) did not change the hyperlocomotor effect of methylphenidate. In vitro, N/OFQ and Ro 65-6570 behaved as NOP full agonists for G-protein and β-arrestin 2 pathways. AT-090 behaved as NOP receptor partial agonist for both transduction pathways, while UFP-113 and [F/G]N/OFQ(1-13)NH2 behaved as partial agonists and antagonists of NOP receptor for NOP/G protein and NOP/β-arrestin 2, respectively. UFP-101 behaved as NOP receptor antagonist for both transduction pathways. Conclusion: NOP ligands producing same effects on NOP/G protein interaction (partial agonism), but with opposite effects on β-arrestin 2 recruitment (partial agonism vs antagonism), can promote different in vivo effects on anxiety and mood as it was observed in the behavioral tests. This work corroborates the potential of NOP receptor as an innovative pharmacological target for the treatment of emotional disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: This study aimed to investigate the effects of the two peptide NOP partial agonists (UFP-113 and [F/G]N/OFQ(1-13)NH2) and the non peptide NOP partial agonist (AT-090) in the mouse emotional behavior as well as in the intracellular transduction pathways following the receptor binding. Methods: Male Swiss or CD-1 mice were used in this study together with NOP(+/+) and NOP(-/-) mice. The elevated plus maze (EPM) was used to evaluate the effects of compounds on anxiety-like behaviors. Diazepam and the NOP agonists, N/OFQ and Ro 65-6570, were used as positive controls in the EPM. NOP(+/+) and NOP(-/-) mice were used to evaluate the selectivity of those compounds that induced anxiolytic-like behaviors. The forced swim test (FST) was used to evaluate the effects of compounds on depressive-like behaviors. Nortriptyline and the NOP antagonists, UFP-101 and SB-612111, were used as positive controls in the FST. The effects of N/OFQ, UFP-101, SB-612111, UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090 were assessed in the methylphenidate-induced hyperlocomotion (MIH) test; in this assay valproate was used as positive control. The G protein and β-arrestin 2 transduction pathways of NOP receptor agonists (N/OFQ and Ro 65-6570), antagonist (UFP-101), and partial agonists (UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090) were also evaluated using an innovative assay that measures a bioluminescence resonance energy transfer process. For this, cell lines permanently co-expressing the NOP receptor coupled to luciferase (energy donor), and green fluorescent protein (energy acceptor) coupled to one of the effector proteins (G protein or β-arrestin 2) were used. Results: Diazepam (1 mg/kg), N/OFQ (1 nmol), Ro 65-6570 (0.1 mg/kg), and AT-090 (0.01 mg/kg) induced anxiolytic-like effect in mice in the EPM. The effects of Ro 65-6570 and AT-090 were selective to NOP receptor. UFP-113 (0.01-1 nmol) and [F/G]N/OFQ(1-13)NH2 (0.1-3 nmol) were inactive in the EPM. In the FST, nortriptyline (30 mg/kg), UFP-101 (10 nmol), SB-612111 (10 mg/kg), UFP-113 (0.01 and 0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (0.3 and 1 nmol) induced antidepressant-like effects, while AT-090 (0.001-0.1 mg/kg) was inactive in this assay. The effects of UFP-113 and [F/G]N/OFQ(1-13)NH2 were selective to NOP receptor. Valproate (400 mg/kg) counteracted methylphenidate (MPH, 10 mg/kg)-induced hyperlocomotion in mice in the open field. N/OFQ (1 nmol), UFP-113 (0.01-0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (1 nmol) were also able to reduce the MPH-induced hyperlocomotion, without changing the locomotor activity per se. The effect of UFP-113 was selective to NOP receptor. The UFP-101 (10 nmol), SB-612111 (10 mg/kg), and AT-090 (0.001-0.03 mg/kg) did not change the hyperlocomotor effect of methylphenidate. In vitro, N/OFQ and Ro 65-6570 behaved as NOP full agonists for G-protein and β-arrestin 2 pathways. AT-090 behaved as NOP receptor partial agonist for both transduction pathways, while UFP-113 and [F/G]N/OFQ(1-13)NH2 behaved as partial agonists and antagonists of NOP receptor for NOP/G protein and NOP/β-arrestin 2, respectively. UFP-101 behaved as NOP receptor antagonist for both transduction pathways. Conclusion: NOP ligands producing same effects on NOP/G protein interaction (partial agonism), but with opposite effects on β-arrestin 2 recruitment (partial agonism vs antagonism), can promote different in vivo effects on anxiety and mood as it was observed in the behavioral tests. This work corroborates the potential of NOP receptor as an innovative pharmacological target for the treatment of emotional disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Panax ginseng CA Meyer (Araliaceae) is a herbaceous plant widely used in China, South Korea, Japan and other Asian countries for the treatment of various diseases micro circulatory, cerebrovascular, among others, representing one of the drugs used by older man. It has over 30 biologically active ginsenosides with different pharmacological and behavioral effects and inhibitory effect on the NMDA receptor. The amino acid glycine is a co-agonist of the NMDA receptor, activating this receptor. At the cellular level, ketamine is widely known to be NMDA receptor antagonist. The aim of this study was to evaluate the general activity in the open field, and anxiety in elevated plus maze, mice treated with P. ginseng compared with the action of ketamine and glycine, to better understand the action of this herbal medicine at the NMDA receptor. We used 66 adult male rats were divided into six groups: a positive control, treated for 30 days with water by gavage, who received glycine (500mg/kg; po) on days 7, 14, 21 and 28 of treatment, one hour before of behavioral assessment, a negative control was treated for 30 days with water by gavage received ketamine (5mg/kg, ip) on days 7, 14, 21 and 28 of treatment, one hour prior to behavioral evaluation, three experimental groups, receiving 100, 200 or 300 mg / kg P. ginseng by gavage for 30 days and one group treated solely with white water, and is also administered 1 ml of water by gavage one hour prior to behavioral evaluation. Animal behavior in these three groups was also examined on days 7, 14, 21 and 28 of treatment. On day 30 of treatment, the animals were anesthetized with thiopental (70mg/kg) for blood collection and after euthanasia, withdrawal of various organs. There were no changes in weight and body weight gain and weight reasons in organ / body weight. However the consumption of water and food values showed a significant increase. Serum levels of AST was increased in a dose-dependently in the animals treated with doses of P. ginseng, glycine and ketamine as compared to the blank group. Unlike creatinine levels proved to be decreased in all treated groups when compared with white. However, the level of urea in these groups was reduced and no changes were observed in the ALT parameter. Histopathological examination revealed no changes in cell morphology in different tissues. There were no behavioral changes in the elevated plus maze and few changes were observed in the open field, animals treated with P. ginseng, glycine and ketamine when compared to white. These data suggest that the doses of P. ginseng employed were unable to induce general toxicity in rats treated for 30 days and also shows that the general behavior of mice treated with P. ginseng was slightly different from that observed in animals treated with ketamine and glycine. Finally, the study on the elevated plus maze showed that the extract of P. ginseng showed no anxiolytic or anxiogenic action

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hebb postulated that memory could be stored thanks to the synchronous activity of many neurons, building a neural assembly. Knowing of the importance of the hippocampal structure to the formation of new explicit memories, we used electrophysiological recording of multiple neurons to access the relevance of rate coding from neural firing rates in comparison to the temporal coding of neural assemblies activity in the consolidation of an aversive memory in rats. Animals were trained at the discriminative avoidance task using a modified elevated plus-maze. During experimental sessions, slow wave sleep periods (SWS) were recorded. Our results show an increase in the identified neural assemblies activity during post-training SWS, but not for the neural firing rate. In summary, we demonstrate that for this particular task, the relevant information needed for a proper memory consolidation lies within the temporal patters of synchronized neural activity, not in its firing rate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anxiety disorders and Parkinson’s disease (PD) affect a large portion of the world population. Indeed, therapeutic alternatives available do not contribute to improve most clinical conditions and/or are linked with undesirable side effects. Thus, there is a great demand for the development of new drugs to treatment of these diseases. Passiflora cincinnata Mast. is a native species present in several Brazilian states, popularly known as “maracujá do mato”, “maracujá tubarão” or “maracujá mochila”. Additionally, species of Passiflora genus are traditionally known for their exotic flowers, edible fruits with pronounced flavor and for their sedative, tranquilizer and anxiolytic properties reported by folk medicine. These plants possess important organic compounds such as phenols, cyanogenic glycosides, flavonoids and alkaloids, which are responsible for the anxiolytic, antioxidant, anti-inflammatory, antihyperglycemic, among others activities when tested in mammals. Despite this fact, only a few studies have been conducted to investigate the possible in vivo biological effects of Passiflora cincinnata Mast extracts. Thereby, in this study we evaluated the effects of the alcoholic extract of this plant in anxiety and PD animal model. Mice acutely or chronically administered with ethanolic extract of P. cincinnata do not showed any anxiogenic- or anxyolitic-like effect in elevated plus maze (EPM). In order to reproduce PD symptom’s in mice, we administered repeated injections of reserpine which progressively induced motor impairments such as increase in catalepsy, oral movements, and reduction of the average speed of the animals in the open field, as well as depleted dopamine prodution in SNpc cells. Furthermore, this treatment resulted in the loss of aversive memory recall in mice when undergoing PMDAT. Yet, passiflora group also show this amnesic profile. However, animals treated concomitantly with the alcoholic extract of Passiflora cincinnata Mast. showed higher latency for the onset of motor impairment evaluated by catalepsy. Thus, our results shows that the alcoholic extract of the plant P. cincinnata was able to delay the onset of the catalepsy induced by reserpine administration, plus reverted the depletion of dopamine production in SNpc cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the behavioral paradigm of discriminative avoidance task, both short and long-term memories have been extensively investigated with behavioral and pharmacological approaches. The aim of the present study was to evaluate, using the abovementioned model, the hippocampal expression of zif-268 - a calcium-dependent immediate early gene involved with synaptic plasticity process - throughout several steps of memory formation, such as acquisition, evocation and extiction. The behavioral apparatus consisted of a modified elevaated plus-maze, with their enclosed arms disposed in "L". A pre-exposure to the maze was made with the animal using all arms enclosed, for 30 minutes, followed by training and test, during 10 minutes each. The between sections interval was 24h. During training, aversive stimuli (bright light and loud noise) were actived whenever the animals entered one of the enclosed armas (aversive arm). Memory acquisiton, retention and extinction were evaluated by the percentage of the total time spent exploring the aversive arm. The parameters evaluated (time spent in the arms and total distance traveled) were estimated with an animal tracking software (Anymaze, Stoelting, USA). Learning during training was estimated by the decrease of the time spent exploring the aversive arm. One hour after the beginning of each section, animals were anaesthetized with sodium-thiopental (i.p.) and perfused with 0.9% heparinized saline solution followed by 4% paraformaldehyde. Brains were cryoprotected with 20% sucrose, separeted in three blocks and frozen. The middle block, containing the hippocampus, was sectioned at 20 micro meters in the coronal plane and the resutant sections were submitted to zif-268 immunohistochemistry. Our results show an increased expression of zif-268 in the dentate gyrus (DG) during the evocation and extinction stages. There is a distinct participation of the DG during the memory evocation, but not during its acquisition. Inaddition, all hippocampal regions (CA1, CA3 and DG) presented an increased zif-268 expression during the process of extinction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of major depression, posttraumatic stress disorder and other psychopathologies with antidepressants can be associated with improvement of the cognitive deficits related to these disorders. Although the mechanisms of these effects are not completely elucidated, alterations in extinction of aversive memories are believed to be present in these psychopathologies. Moreover, researches with laboratory animals usually focus on male subjects, and we have recently verified that extinction of an aversive task is reduced in female rats when compared to males. In the present study, female rats were long-term treated with clinically used antidepressants (fluoxetine, nortriptyline or mirtazapine) and tested in the plus-maze discriminative avoidance and forced swimming tests in order to evaluate learning, memory, extinction, anxiety and depression-related behaviors. All groups learned the task, but learning was somewhat faster in nortriptyline and mirtazapine-treated animals . Task retrieval was also showed by all experimental groups. Chronic treatment with fluoxetine, but not with the other antidepressants, increased extinction of the discriminative task. In the forced swimming test, animals treated with fluoxetine and mirtazapine showed decreased immobility duration. In conclusion, antidepressants interfere with learning and female rats treated with fluoxetine presented increased extinction of the aversive memory task. On the other hand, both fluoxetine and mirtazapine were effective in the forced swimming test, suggesting dissociation between the antidepressant effects and the extinction of aversive memories

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GABAergic neurotransmission has been implicated in many aspects of learning and memory, as well as mood and anxiety disorders. The amygdala has been one of the major focuses in this area, given its essential role in modulating emotionally relevant memories. However, studies with male subjects are still predominant in the field. Here we investigated the consequences for an aversive memory of enhancing or decreasing GABAergic transmission in the basolateral nucleus of the amygdala (BLA). Wistar female rats were trained in the plus-maze discriminative avoidance task, in which they had to learn to avoid one of the enclosed arms where an aversive stimulus consisting of a bright light and a loud noise was given (day 1). Fifteen minutes before the test session (day 2) animals received 0,2 μL infusions of either saline solution, the GABAergic agonist muscimol (0,05 mg/ml), or the GABAergic antagonist bicuculine (0,025 mg/ml) bilaterally intra-BLA. On the test day, females in proestrous or estrous presented adequate retrieval and did not extinguish the task, while females in metestrous or diestrous presented impaired retrieval. In the first group, muscimol infusion impaired retrieval and bicuculline had no effect, suggesting naturally low levels of GABAergic transmission in the BLA of proestrous and estrous females. In the second group, muscimol infusion had no effect and bicuculline reversed retrieval impairment, suggesting naturally high levels of GABAergic transmission in the BLA of metestrous and diestous females. Additionally, proestrous and estrous females presented higher anxiety levels compared to metestrous and diestrous females, which could explain better performance of this group. On the other hand, BLA GABAergic system did not interfere with the innate fear response because drug infusions had no effect in anxiety. Thus, retrieval alterations caused by the GABAergic drugs were probably related specifically to memory processes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physiologist H. Selye defined stress as the nonspecific response of the body to any factors that endanger homeostasis (balance of internal environment) of the individual. These factors, agents stressors, are able to activate the Hypothalamic-Pituitary-Adrenal (HPA) axis, thus resulting in the physiological responses to stress by the release of glucocorticoids that leads to psychophysiological changes, including effects on cognitive functions such as learning and memory. When this axis is acutely stimulated occurs a repertoire of behavioral and physiological changes can be adaptive to the individual. Notwithstanding, when the HPA axis is chronically stimulated, changes may favor the development of, such as anxiety disorders. Some drugs used in the clinic for the treatment of anxiety disorders these can exert effects on cognitive function, on the HPA axis and on the anxiety. In this context, the aim of our study was to investigate the effects of administration i.p. acute of diazepam (DZP, 2 mg/kg), buspirone (BUS, 3 mg/kg), mirtazapine (MIR, 10 mg/kg) and fluoxetine (FLU, 10 mg/kg) in male mice submitted to acute restraint stress, and evaluated using plus-maze discriminative avoidance task (PMDAT), which simultaneously evaluates parameters such as learning, memory and anxiety. Our results demonstrated that (1) the administration of DZP and BUS, but not FLU, promoted anxiolytic effects in animals; (2) administration mirtazapine caused sedative effect to animals; (3) in the training session, the animals treated with BUS, MIR and FLU learned the task, on the other hand DZP group showed impairment in learning; (4) in the test session, animals treated with DZP, BUS, and MIR showed deficits in relation to discrimination between the enclosed arms, aversive versus non-aversive arm, demonstrating an impairment in memory, however, animals treated with FLU showed no interference in the retrieval of this memory; (5) acute stress did not interfere in locomotor activity, anxiety, or learning on the learning task, but induced impairment in retrieval memory, and the group treated with FLU did not demonstrated this deficit of memory . These results suggest that acute administration of drugs with anxiolytic and antidepressant activity does not interfere with the learning process this aversive task, but impair its retrieval, as well as the acute restraint stress. However, the antidepressant fluoxetine was able to reverse memory deficits promoted by acute stress, which may suggest that modulation, even acutely serotonergic neurotransmission, by selectively inhibiting the reuptake of this neurotransmitter, interferes on the process of retrieval of an aversive memory

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithium (Li) is the first choice to treat bipolar disorder, a psychiatric illness characterized by mood oscillations between mania and depression. However, studies have demonstrated that this drug might influence mnemonic process due to its neuroprotector, antiapoptotic and neurogenic effects. The use of Li in the treatment of cognitive deficits caused by brain injury or neurodegenerative disorders have been widely studied, and this drug shows to be effective in preventing or even alleviating the memory impairment. The effects of Li on anxiety and depression are controversial and the relationship of the effects of lithium on memory, anxiety and depression remain unknown. In this context, this study aims to: evaluate the effects of acute and chronic administration of lithium carbonate in aversive memory and anxiety, simultaneously, using the plus maze discriminative avoidance task (PMDAT); test the antidepressant effect of the drug through the forced swimming test (FS) and analyze brainderived neurotrophic factor (BDNF) expression in structures related to memory and emotion. To evaluation of the acute effects, male Wistar rats were submitted to i.p. administration of lithium carbonate (50, 100 or 200 mg/kg) one hour before the training session (PMDAT) or lithium carbonate (50 or 100 mg/kg) one hour before the test session (FS). To evaluation of the chronic effects, the doses administered were 50 or 100 mg/kg or vehicle once a day for 21 days before the beginning of behavioral tasks (PMDAT and FS). Afterwards, the animals were euthanized and their brains removed and submitted to immunohistochemistry procedure to quantify BDNF. The animals that received acute treatment with 100 and 200 mg/kg of Li did not discriminated between the enclosed arms (aversive and non-aversive) in the training session of PMDAT, showing that these animal did not learned the task. This lack of discrimination was also observed in the test session, showing that the animals did not recall the aversive task. We also observed an increased exploration of the open arms of these same groups, indicating an anxiolytic effect. The same groups showed a reduction of locomotor activity, however, this effect does not seem to be related with the anxiolytic effect of the drug. Chronic treatment with Li did not promote alterations on learning or memory processes. Nevertheless, we observed a reduction of open arms exploration by animals treated with 50 mg/kg when compared to the other groups, showing an anxiogenic effect caused by this dose. This effect it is not related to locomotor alterations since there were no alterations in these parameters. Both acute and chronic treatment were ineffective in the FS. Chronic treatment with lithium was not able to modify BDNF expression in hippocampus, amygdala and pre-frontal cortex. These results suggest that acute administration of lithium promote impairments on learning in an aversive task, blocking the occurrence of memory consolidation and retrieval. The reduction of anxiety following acute treatment may have prevented the learning of the aversive task, as it has been found that optimum levels of anxiety are necessary for the occurrence of learning with emotional context. With continued, treatment the animals recover the ability to learn and recall the task. Indeed, they do not show differences in relation to control group, and the lack of alterations on BDNF expression corroborates this result. Possibly, the regimen of treatment used was not able to promote cognitive improvement. Li showed acute anxiolytic effect, however chronic administration 4 promoted the opposite effect. More studies are necessary to clarify the potential beneficial effect of Li on aversive memory