3 resultados para Anomalous diffusion
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
We investigate several diffusion equations which extend the usual one by considering the presence of nonlinear terms or a memory effect on the diffusive term. We also considered a spatial time dependent diffusion coefficient. For these equations we have obtained a new classes of solutions and studied the connection of them with the anomalous diffusion process. We start by considering a nonlinear diffusion equation with a spatial time dependent diffusion coefficient. The solutions obtained for this case generalize the usual one and can be expressed in terms of the q-exponential and q-logarithm functions present in the generalized thermostatistics context (Tsallis formalism). After, a nonlinear external force is considered. For this case the solutions can be also expressed in terms of the q-exponential and q-logarithm functions. However, by a suitable choice of the nonlinear external force, we may have an exponential behavior, suggesting a connection with standard thermostatistics. This fact reveals that these solutions may present an anomalous relaxation process and then, reach an equilibrium state of the kind Boltzmann- Gibbs. Next, we investigate a nonmarkovian linear diffusion equation that presents a kernel leading to the anomalous diffusive process. Particularly, our first choice leads to both a the usual behavior and anomalous behavior obtained through a fractionalderivative equation. The results obtained, within this context, correspond to a change in the waiting-time distribution for jumps in the formalism of random walks. These modifications had direct influence in the solutions, that turned out to be expressed in terms of the Mittag-Leffler or H of Fox functions. In this way, the second moment associated to these distributions led to an anomalous spread of the distribution, in contrast to the usual situation where one finds a linear increase with time
Resumo:
One of the mechanisms responsible for the anomalous diffusion is the existence of long-range temporal correlations, for example, Fractional Brownian Motion and walk models according to Elephant memory and Alzheimer profiles, whereas in the latter two cases the walker can always "remember" of his first steps. The question to be elucidated, and the was the main motivation of our work, is if memory of the historic initial is condition for observation anomalous diffusion (in this case, superdiffusion). We give a conclusive answer, by studying a non-Markovian model in which the walkers memory of the past, at time t, is given by a Gaussian centered at time t=2 and standard deviation t which grows linearly as the walker ages. For large widths of we find that the model behaves similarly to the Elephant model; In the opposite limit (! 0), although the walker forget the early days, we observed similar results to the Alzheimer walk model, in particular the presence of amnestically induced persistence, characterized by certain log-periodic oscillations. We conclude that the memory of earlier times is not a necessary condition for the generating of superdiffusion nor the amnestically induced persistence and can appear even in profiles of memory that forgets the initial steps, like the Gausssian memory profile investigated here.
Resumo:
The random walk models with temporal correlation (i.e. memory) are of interest in the study of anomalous diffusion phenomena. The random walk and its generalizations are of prominent place in the characterization of various physical, chemical and biological phenomena. The temporal correlation is an essential feature in anomalous diffusion models. These temporal long-range correlation models can be called non-Markovian models, otherwise, the short-range time correlation counterparts are Markovian ones. Within this context, we reviewed the existing models with temporal correlation, i.e. entire memory, the elephant walk model, or partial memory, alzheimer walk model and walk model with a gaussian memory with profile. It is noticed that these models shows superdiffusion with a Hurst exponent H > 1/2. We study in this work a superdiffusive random walk model with exponentially decaying memory. This seems to be a self-contradictory statement, since it is well known that random walks with exponentially decaying temporal correlations can be approximated arbitrarily well by Markov processes and that central limit theorems prohibit superdiffusion for Markovian walks with finite variance of step sizes. The solution to the apparent paradox is that the model is genuinely non-Markovian, due to a time-dependent decay constant associated with the exponential behavior. In the end, we discuss ideas for future investigations.