100 resultados para Sacarídeos - Síntese química
Resumo:
Several materials are currently under study for the CO2 capture process, like the metal oxides and mixed metal oxides, zeolites, carbonaceous materials, metal-organic frameworks (MOF's) organosilica and modified silica surfaces. In this work, evaluated the adsorption capacity of CO2 in mesoporous materials of different structures, such as MCM-48 and SBA- 15 without impregnating and impregnated with nickel in the proportions 5 %, 10 % and 20 % (m/m), known as 5Ni-MCM-48, 10Ni-MCM-48, 20Ni-MCM-48 and 5Ni-SBA-15, 10NiSBA-15, 20Ni-SBA-15. The materials were characterized by means of X-ray diffraction (XRD), thermal analysis (TG and DTG), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption and desorption (BET) and scanning electron microscopy (SEM) with EDS. The adsorption process was performed varying the pressure of 100 - 4000 kPa and keeping the temperature constant and equal to 298 K. At a pressure of 100 kPa, higher concentrations of adsorption occurred for the materials 5Ni-MCM-48 (0.795 mmol g-1 ) and SBA-15 (0.914 mmol g-1 ) is not impregnated, and at a pressure of 4000 kPa for MCM-48 materials (14.89 mmol g-1) and SBA-15 (9.97 mmol g-1) not impregnated. The results showed that the adsorption capacity varies positively with the specific area, however, has a direct dependency on the type and geometry of the porous structure of channels. The data were fitted using the Langmuir and Freundlich models and were evaluated thermodynamic parameters Gibbs free energy and entropy of the adsorption system
Resumo:
This work aimed to promote the synthesis, characterization and propose a plausible molecular structure for coordination compounds involving furosemide (4-Chloro-2-(2- furylmethylamino)-5-sulfamoyl-benzoic acid) with the metal ions Ni+2, Zn+2 and Co+2. The compounds were obtained in methanoic medium by evaporation of the solvent after the synthesis procedure. For characterization of coordination compounds determining the levels of metals by EDTA complexometry, infrared spectroscopy (FTIR), solubility of compounds in various solvents, thermogravimetry (TG), differential scanning calorimetry (DSC), differential thermal analysis were made (DTA), determination of the carbon , hydrogen and nitrogen (CHN). The results of infrared spectroscopy in the region suggest that the organic ligand is coordinated in a bidentate fashion to the metal ions, the metal center interactions to occur by the coordination of the nitrogen atom of the amino group and the oxygen atom of the carboxylic acid of the structure of furosemide. With the results of the levels of metal, elemental analysis (CHN) and thermal analysis has been possible to propose the structure of the ligand. The values of the molar conductivity of the complex in acetonitrile behavior suggest the non acetonitrile electrolyte solution. With the solubility tests it was found that the compounds have high solubility in methanol and acetonitrile, as are partially insoluble in water. From the results of thermal analysis (TG, DSC, DTA), it was possible to obtain the thermal behavior of the compounds as stages of dehydration, thermal stability, decomposition and the energies involved.
Resumo:
Increasing energy demand is being met largely by fossil fuel reserves, which emit CO2, SOx gases and various other pollutants. So does the search for fuels that emit fewer pollutants and have the same energy efficiency. In this context, hydrogen (H2) has been increasingly recognized as a potential carrier of energy for the near future. This is because the H2 can be obtained by different routes and has a wide application area , in addition to having clean burning, generating only H2O as a product of combustion , and higher energy density per unit mass . The Chemical Looping Reforming process (CLR) has been extensively investigated in recent years, it is possible to regenerate the catalyst by applying cycles of reduction and oxidation. This work has as main objective to develop catalysts based on nickel and cobalt to study the reactivity of reform with chemical recycling process. The catalysts were prepared by three different methods: combustion assisted by microwave, wet impregnation and co-precipitation. All catalysts synthesized have the same amount by weight of the active phases (60% w / w). The other 40 % m/m consists in La2O3 (8% w / w), Al2O3 (30% w / w) and MgO (2%). Oxygen carriers have been named as follows: N or C, nickel or cobalt, followed by the number 3 or 6, meaning 30 to 60% of active phase in the oxide form and C, CI or CP, which means self-combustion assisted by microwave, self-combustion assisted by microwave followed by wet impregnation and co-precipitation. The oxygen carriers were then characterized by the techniques of X-ray diffraction (XRD), surface area (BET), temperature programmed reduction (TPR) and scanning electron microscopy (SEM). The characterization results showed that the different synthesis methods have led to obtaining different morphologies and structures. Redox tests using CH4 as reducing agent and sintetic air as oxidant agent was done with N6C and C6C, N6CI and C6CI and N6CP and C6CP oxygen carriers. The tests revealed different behaviors, depending on active phase and on synthesis procedure. N6C oxygen carrier produced high levels of H2. The C6CI oxygen carrier produced CO2 and H2O without carbon deposits.
Resumo:
Clays are materials with specific properties that make them promising for various studies. In this work we used the vermiculite clay as support for iron compounds, in order to obtain promising materials for application in the heterogeneous type photo-Fenton process. In all, the study included six solid, starting from the vermiculite (V0) was obtained calcined vermiculite (V0-C), the mixed material (V0/β-FeOOH) formed by vermiculite more akaganeite, exchanged vermiculite (v0t-C), vermiculite impregnated Wet (V0u-C) and V0u-CL that is the solid obtained by impregnating with a back washing. The solids of the study had their physical and chemical characteristics investigated by the following characterization techniques: X-Ray Diffraction (XRD), Infrared Spectroscopy (IR), Energy Dispersive Spectroscopy (EDS), X-Ray Fluorescence Spectroscopy (XRF), UV-Vis by Diffuse Reflectance (DR UV-Vis), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The V0 material showed three distinct phases, which are the very vermiculite, hidrobiotite and biotite, the last two phases are part of the geological of formation process vermiculite. The solids obtained after the modification showed an increase in the amount of iron present in the clay, these being quantities important for application in photocatalysis. The micrographs and EDS data, show that after treatment of addition of the metal , the iron was intercalary in structure of vermiculite for solid V0t-C and V0u-C, however, this did not occur with mixed material. In the photoFenton process, was observed a maximum removal of 88.8% of the dye methylene blue coloring for the catalyst V0/β-FeOOH, while for the other solids was obtained values between 76.8 and 62.6%, compared to 37.8% of discoloration without the presence of catalyst. Therefore, it is concluded that the vermiculite clay presents as a good catalyst and iron support for the, beyond of presenting a low cost because of its high abundance.
Resumo:
This work describes the synthesis and study of the application of a new surfactant (Triester Lipophilic – TEL) obtained by citric acid with octanol. It is reaction was followed by thin layer chromatography (TLC) and after purification the product was characterized by proton and 13 – carbon nuclear magnetic resonance spectroscopy ( H and 13C NMR), thermogravimetric analysis (TGA) and surface tension analysis of oil-in-water emulsions. The TEL performance as surfactant in ester, n-paraffin and biodiesel based drilling fluids on the 70/30 and 60/40 water- oil rations (WOR) was evaluated by comparative tests of two commercial products used in the fields. These drilling fluids were aged in roller oven at 200 0 F during 16 h. The rheological and electric stability measurements were carried out at 135 ºF, the phase separation was evaluated after seven days at rest and the filtrate volume of drilling fluids was determined at high temperature and high pressure. The rheological behavior of the drilling fluids was evaluated by the flow curves. The results showed that the drilling fluids studied here presented Binghamian behavior as well as the used in the oil fields. The laboratory tests showed that the TEL reduced the filtrate volume and promoted the enhance of the thermal and mechanical stabilities.
Resumo:
Synthesis of heterocyclic compounds, as quinoxaline derivatives, has being shown to be relevant and promissor due to expressive applications in biological and technological areas. This work was dedicated to the synthesis, characterization and reactivity of quinoxaline derivatives in order to obtain new chemosensors. (L)-Ascorbic acid (1) and 2,3-dichloro-6,7- dinitroquinoxalina (2) were explored as synthetic precursors. Starting from synthesis of 1 and characterization of compounds derived from (L)-ascorbic acid, studies were performed investigating the application of products as chemosensors, in which compound 36 demonstrated selective affinity for Cu2+ íons in methanolic solution, by naked-eye (colorimetric) and UVvisible analyses. Further, initial analysis suggests that 39 a Schiff’s base derived from 36 also presents this feature. Five quinoxaline derivatives were synthesized from building block 2 through nucleophilic aromatic substitution by aliphatic amines, in which controlling the experimental conditions allows to obtain both mono- and di-substituted derivatives. Reactivity studies were carried out with two purposes: i) investigate the possibility of 47 compound being a chemosensor for anion, based on its interaction with sodium hydroxide in DMSO, using image analysis and UV-visible spectroscopy; ii) characterize kinetically the conversion of compound 44 into 46 based on RGB and multivariate image analysis from TLC data, as a simple and inexpensive qualitative and quantitative tool.
Resumo:
In this paper a synthesis parameters study was conducted in order to optimize the obteinment of MCM-22 (MWW structure) and increase its accessibility, getting higher external surface and generating mesopores. Syntheses with Si / Al = 15 and Si / Al = 50 ratios were performed under static conditions at different temperatures and with seeds induction, which resulted in MCM-22 pure and crystalline (Si / Al ratio = 15) after 3 days and Si / Al = 50 after 11 days. The reduction of hexamethyleneimine content (HMI) was studied in the stirring synthesis and a HMI reduction of 47% was possible through the mother liquor reuse, in addition, a specific area of 481 m² / g has been obtained in the fourth synthesis day. Regarding the increase of accessibility of the MCM-22 zeolite skeins of MCM-22 plates with about 2 μm were obtained, through the use of dissolved silica, addition of seeds, increased temperature and synthesis time of 2 days. A significant value of specific area was found for this material, around 500 m² / g. Also with respect to the increase of MCM-22 accessibility, treatment with oxalic acid concentration of 0.5 mol / L and silanization of proto-zeolitic units resulted in the mesopores formation . Furthermore, silanization still favored reduction of 70 % in crystal size and a specific area of 566 m² / g.
Resumo:
Nanoparticles are importante for the study of new phenomena and for the development of new applications. Metallic magnetic nanoparticles like Cobalt and Nickel are important for their applications in nanoscience and nanotechnology. In this work, we report on the synthesis and characterization of Ni and Co nanoparticles. The nanoparticles were prepared by the modi- ed sol-gel method and were formed in the pore-network of the biopolymer quitosan. The reduction occurred in absence of H2 ux. The metallic particles and their monoxides have a face-centered- cubic structure. The metallic particles sizes ranged from 59 to 77 nm and from 19 to 50 nm for Ni and Co, respectively. Their monoxides chemically passivated the metallic cores, and after several weeks we have not observed further increase in oxidation. The synthesis method was tuned to obtain mainly the ferromagnetic phase. The system behaves like a core/shell structure with a ferromagnetic core and an antiferromagnetic shell. Exchange bias e ect was observed at temperatures below the Néel temperature. Both systems were submitted to an alternated magnetic eld and the heat released by the particles increased the temperature to 140°C in an interval of 5 min. Similar studies in samples dispersed in water increased the temperatures to 40-59°C, these results suggest that these materials are candidates for magnetic hyperthermia.
Resumo:
Metal Organic Frameworks (MOFs) are hybrids materials, often crystalline, consisting of metal or metal clusters, connected by polytopic organic ligands repetitively, leading to structures, usually porous. In this work, MOFs based on lanthanide ions (La3+ and Gd3+) and dicarboxylate type of ligands (isophthalic and terephthalic acids), were synthesized by hydrothermal, solvothermal and hydro(solvo)thermal methods. The effects of the synthetic route as well as the type of heating, conventional or by microwave, on the structure and properties of MOFs were studied. The powder samples obtained were characterized by X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. The results suggest that the addition of an organic or inorganic base is needed to promote the deprotonation of the ligand, since in the samples prepared by the hydrothermal method, without the use of a base, no formation of the metalorganic framework was observed. On the other hand, the presence of DMF as solvent or cosolvent, afforded the deprotonation of the ligand with the consequent formation of MOFs. At least two different crystalline structures were identified for the samples prepared with terephthalic acid. These samples are isostructural with those reported for phases Eu(1,3-BDC)DMF, Eu2(1,4-BDC)3 (DMF)2 and Tb(1,4-BDC)H2O. The presence of water in the reaction medium in the hydro(solvo)thermal method, provoked the growth of the structure different from that observed in the absence of water. This can be explained by the difference in the coordination mode of water and DMF to lanthanide ions. Although not identified by XRD, the samples prepared with isophthalic acid, also present metalorganic structures, which was confirmed by the presence of the characteristic displacement of the carbonyl group band in their infrared spectra, compared to the spectrum of the pure ligand. This shift was also observed in the samples prepared with terephthalic acid. Thermal analisys shows that the metal organic frameworks do not collapse occurs at a temperature below 430°C.The analysis of scanning electron microscopy suggests that the morphology of powders is highly dependent on the type of heating used, conventional or by microwave.
Resumo:
Were synthesized in this work in the following aqueous solution coordination compounds: [Ni(LDP)(H2O)2Cl2].2H2O, [Co(LDP)Cl2].3H2O, [Ni(CDP)Cl2].4H2O, [Co(CDP)Cl2].4H2O, [Ni(BDZ)2Cl2].4H2O and [Co(BDZ)2Cl2(H2O)2]. These complexes were synthesized by stoichiometric addition of the binder in the respective metal chloride solutions. Precipitation occurred after drying the solvent at room temperature. The characterization and proposed structures were made using conventional analysis methods such as elemental analysis (CHN), absorption spectroscopy in the infrared Fourier transform spectroscopy (FTIR), X-ray diffraction by the powder method and Technical thermoanalytical TG / DTG (thermogravimetry / derivative thermogravimetry) and DSC (differential scanning calorimetry). These techniques provided information on dehydration, coordination modes, thermal performance, composition and structure of the synthesized compounds. The results of the TG curve, it was possible to establish the general formula of each compound synthesized. The analysis of X-ray diffraction was observed that four of the synthesized complex crystal structure which does not exhibit the complex was obtained from Ldopa and carbidopa and the complex obtained from benzimidazole was obtained crystal structures. The observations of the spectra in the infrared region suggested a monodentate ligand coordination to metal centers through its amine group for all complexes. The TG-DTG and DSC curves provide important information and on the behavior and thermal decomposition of the synthesized compounds. The molar conductivity data indicated that the solutions of the complexes formed behave as a nonelectrolyte, which implies that chlorine is coordinated to the central atom in the complex.
Resumo:
Were synthesized in this work in the following aqueous solution coordination compounds: [Ni(LDP)(H2O)2Cl2].2H2O, [Co(LDP)Cl2].3H2O, [Ni(CDP)Cl2].4H2O, [Co(CDP)Cl2].4H2O, [Ni(BDZ)2Cl2].4H2O and [Co(BDZ)2Cl2(H2O)2]. These complexes were synthesized by stoichiometric addition of the binder in the respective metal chloride solutions. Precipitation occurred after drying the solvent at room temperature. The characterization and proposed structures were made using conventional analysis methods such as elemental analysis (CHN), absorption spectroscopy in the infrared Fourier transform spectroscopy (FTIR), X-ray diffraction by the powder method and Technical thermoanalytical TG / DTG (thermogravimetry / derivative thermogravimetry) and DSC (differential scanning calorimetry). These techniques provided information on dehydration, coordination modes, thermal performance, composition and structure of the synthesized compounds. The results of the TG curve, it was possible to establish the general formula of each compound synthesized. The analysis of X-ray diffraction was observed that four of the synthesized complex crystal structure which does not exhibit the complex was obtained from Ldopa and carbidopa and the complex obtained from benzimidazole was obtained crystal structures. The observations of the spectra in the infrared region suggested a monodentate ligand coordination to metal centers through its amine group for all complexes. The TG-DTG and DSC curves provide important information and on the behavior and thermal decomposition of the synthesized compounds. The molar conductivity data indicated that the solutions of the complexes formed behave as a nonelectrolyte, which implies that chlorine is coordinated to the central atom in the complex.
Resumo:
This thesis presents the synthesis, characterization and study of the associative behaviour in aqueous media of new responsive graft copolymers, based on carboxymethylcellulose as the water-soluble backbone and Jeffamine® M-2070 e Jeffamine® M-600 (commercial polyetheramines) as the thermoresponsive grafts with high cloud point temperatures in water. The synthesis was performed on aqueous medium, by using 1-ethyl-3- (3-(dimethylamino)-propyl)carbodiimide hydrochloride and N-hydroxysuccinimide as activators of the reaction between carboxylategroupsfrom carboxymethylcellulose and amino groups from polyetheramines. The grafting reaction was confirmed by infrared spectroscopy and the grafting percentage by 1H NMR. The molar mass of the polyetheramines was determined by 1H NMR, whereas the molar mass of CMC and graft copolymers was determined by static light scattering. The salt effect on the association behaviour of the copolymers was evaluated in different aqueous media (Milli-Q water, 0.5M NaCl, 0.5M K2CO3 and synthetic sea water), at different temperatures, through UV-vis, rheology and dynamic light scattering. None of the copolymers solutions, at 5 g/L, turned turbid in Milli-Q water when heated from 25 to 95 °C, probably because of the increase in hydrophibicity promoted by CMC backbone. However, they became turbid in the presence of salts, due to the salting out effect, where the lowest cloud point was observed in 0.5M K2CO3, which was attributed to the highest ionic strength in water, combined to the ability of CO3 2- to decrease polymer-solvents interactions. The hydrodynamic radius and apparent viscosity of the copolymers in aqueous medium changed as a function of salts dissolved in the medium, temperature and copolymer composition. Thermothickening behaviour was observed in 0.5M K2CO3 when the temperature was raised from 25 to 60°C. This performance can be attributed to intermolecular associations as a physical network, since the temperature is above the cloud point of the copolymers in this solvent.
Resumo:
The direct use of natural gas makes the Solid Oxide Fuel Cell (SOFC) potentially more competitive with the current energy conversions technologies. The Intermediate Temperature SOFC (IT-SOFC) offer several advantages over the High Temperature SOFC (HT-SOFC), which includes better thermal compatibility among components, fast start with lower energy consumption, manufacture and operation cost reduction. The CeO2 based materials are alternatives to the Yttria Stabilized Zirconia (YSZ) to application in SOFC, as they have higher ionic conductivity and less ohmic losses comparing to YSZ, and they can operate at lower temperatures (500-800°C). Ceria has been doped with a variety of cations, although, the Gd3+ has the ionic radius closest to the ideal one to form solid solution. These electrolytes based in ceria require special electrodes with a higher performance and chemical and termomechanical compatibility. In this work compounds of gadolinia-doped ceria, Ce1-xGdxO2-δ (x = 0,1; 0,2 and 0,3), used as electrolytes, were synthesized by polymeric precursors method, Pechini, as well as the composite material NiO - Ce0,9Gd0,1O1,95, used as anode, also attained by oxide mixture method, mixturing the powders of the both phases calcinated already. The materials were characterized by X ray diffraction, dilatometry and scanning electronic microscopy. The refinement of the diffraction data indicated that all the Ce1-xGdxO2-δ powders were crystallized in a unique cubic phase with fluorite structure, and the composite synthesized by Pechini method produced smaller crystallite size in comparison with the same material attained by oxide mixture method. All the produced powders had nanometric characteristics. The composite produced by Pechini method has microstructural characteristics that can increase the triple phase boundaries (TPB) in the anode, improving the cell efficiency, as well as reducing the mass transport mechanism effect that provokes anode degradation
Resumo:
Inorganic pigment comprises a host lattice, which is part of the chromophore component (usually a transition metal cation) and possible components modifiers, which stabilize, add or restate the properties pigments. Among the materials with spinel, ferrites, and the chromite stand out, because they have broad technological importance in the area of materials, applicability, pigments, catalytic hydrogenation, thin film, ceramic tiles, among others. The present work, pigments containing CuFe2O4, CuCr2O4,e CuFeCrO4, were synthesized by a method that makes use of gelatin as organic precursor using their application to ceramic pigments. The pigments were characterized by X-ray diffraction (XRD), Infrared spectroscopy, scanning electron microscopy (SEM) spectroscopy in the UV-visible and Colorimetry. The results confirmed the feasibility of the synthetic route used, with respect to powders synthesized, there is the formation of spinel phase from 500°C, with an increase in crystallinity and the formation of other phases. The pigments were shown to be crystalline and the desired phases were obtained. The copper chromite have hues ranging from green to black according to the calcination temperature, while the copper chromite doped with iron had brownish. The ferrites showed copper color and darker brown to black, which may indicate an interesting factor because of the importance of black pigment
Resumo:
The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties