517 resultados para QUIMICA TEORICA
Resumo:
Ceramic powders based on oxides of perovskite-type structure is of fundamental interest nowadays, since they have important ionic-electronic conductivity in the use of materials with technological applications such as gas sensors, oxygen permeation membranes, catalysts and electrolytes for solid oxide fuel cells (SOFC). The main objective of the project is to develop nanostructured ceramic compounds quaternary-based oxide Barium (Br), Strontium (Sr), Cobalt (Co) and Iron (Fe). In this project were synthesized compounds BaxSr(1-x)Co0, 8Fe0,2O3- (x = 0.2, 0.5 and 0.8) through the oxalate co-precipitation method. The synthesized powders were characterized by thermogravimetric analysis and differential thermal analysis (TGADTA), X-ray diffraction (XRD) with the Rietveld refinement using the software MAUD and scanning electron microscopy (SEM). The results showed that the synthesis technique used was suitable for production of nanostructured ceramic solid solutions. The powders obtained had a crystalline phase with perovskite-type structure. The TGA-DTA results showed that the homogeneous phase of interest was obtained temperature above 1034°C. It was also observed that the heating rate of the calcination process did not affect the elimination of impurities present in the ceramic powder. The variation in the addition of barium dopant promoted changes in the average crystallite size in the nanometer range, the composition being BSCF(5582) obtained the lowest value (179.0nm). The results obtained by oxalate co-precipitation method were compared with those synthesis methods in solid state and EDTA-citrate method
Resumo:
Societal concerns about environmental sustainability has lead to the development of ecologically-friendly alternatives to chemical insecticides for crop protection. One such alternative is biological pest control. In particular, baculoviruses are well suited as insect biopesticides due to their narrow host specificity and relative ease of propagation. In Brazil, the baculovirus Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) is the main biological control agent employed for the soybean pest, Anticarsia gemmatalis. This baculovirus biopesticide is currently produced using caterpillars, but increasing market demand for the product has encouraged the development of an in vitro manufacturing process, which can be scaled up to much higher virus productivities. In this study, three wild-type AgMNPV isolates (AgMNPV-2D, AgMNPV-MP2 and AgMNPV-MP5) and a recombinant form (vAgEGT-LacZ) were characterised in terms of occlusion body (OB) production and infection kinetics, to enable future optimisation of the in vitro production process. These viruses were propagated using a Spodoptera frugiperda (IPLB-SF21) insect cell line grown in shaker-flask batch cultures. Among the virus isolates tested, AgMNPV-MP5 was found to be the best producer, yielding (5.3±0.85)x108 OB/mL after 8 days post infection. The characterisation of vAgEGT-LacZ propagation in suspension cell cultures has not been previously reported in the literature; hence it became the main focus for this thesis. In particular, it was carried out a study on the effect of the multiplicity of infection (MOI) on OB production. Five successive batches were performed getting a final production (8.9±1.42)x1014 occlusion bodies, considering that production is related for a bioreactor with final volume of 10m3. A low MOI associated with a fed-batch process for vAgEGT-LacZ production was found to support a 3-fold higher OB yield when compared to the default batch process (1.8x107 and 5.3x107 OB/mL, respectively). This yield is competitive with regards to the production process.
Resumo:
This thesis focuses on the coprecipitation synthesis method for preparation of ceramic materials with perovskite structure, their characterization and application as catalytic material in the reaction of converting CO to CO2 developing a methodological alternative route of synthesis from the middle via oxalate coprecipitation material SrCo0,8Fe0,2O3-d. In order to check the influence of this method, it was also synthesized using a combined citrate - EDTA complexing method. The material was characterized by: X-ray diffraction (XRD), Rietveld refinement method, thermogravimetry and differential thermo analysis (TG / DTA), scanning (SEM) and transmission (TEM) electron microscopy, particle size distribution and surface analysis method BET. Both methods led to post-phase synthesis, with pH as a relevant parameter. The synthesis based on the method via oxalate coprecipitation among particles led to the crystalline phase as those obtained using a combined citrate - EDTA complexing method under the same conditions of heat treatment. The nature of the reagent used via oxalate coprecipitation method produced a material with approximately 80 % lower than the average size of crystallites. Moreover, the via oxalate coprecipitation method precursors obtained in the solid state at low temperature (~ 26 oC), shorter synthesis, greater thermal stability and a higher yield of around 90-95 %, maintaining the same order of magnitude the crystallite size that the combined citrate - EDTA complexing method. For purposes of comparing the catalytic properties of the material was also synthesized by the using a combined citrate - EDTA complexing method. The evaluation of catalytic materials SrCo0,8Fe0,2O3-d LaNi0,3Co0,7O3-d was accompanied on the oxidation of CO to CO2 using a stainless steel tubular reactor in the temperature range of 75-300 oC. The conversion CO gas was evaluated in both materials on the results shaved that the firm conversion was loves for the material LaNi0,3Co0,7O3-d
Resumo:
The molecular distillation is show as an alternative for separation and purification of various kinds of materials. The process is a special case of evaporation at high vacuum, in the order from 0.001 to 0.0001 mmHg and therefore occurs at relatively lower temperatures, preserves the material to be purified. In Brazil, molecular distillation is very applied in the separation of petroleum fractions. However, most studies evaluated the temperature of the evaporator, condenser temperature and flow such variables of the molecular distillation oil. Then, to increase the degree of recovery of the fraction of the distillate obtained in the process of the molecular distillation was evaluated the use nonionic surfactants of the class of nonylphenol ethoxylate, molecules able to interact in the liquid-liquid and liquid-vapor interface various systems. In this context, the aim of this work was to verify the influence of commercial surfactant (Ultranex-18 an Ultranex-18-50) in the molecular distillation of a crude oil. The physicochemical characterization of the oil was realized and the petroleum shown an API gravity of 42°, a light oil. Initially, studied the molecular distillation without surfactant using star design experimental (2H ± ) evaluated two variables (evaporator temperature and condenser temperature) and answer variable was the percentage in distillate obtained in the process (D%). The best experimental condition to molecular distillation oil (38% distillate) was obtained at evaporator and condenser temperatures of 120 °C and 10 ° C, respectively. Subsequently, to determine the range of surfactant concentration to be applied in the process, was determined the critical micellar concentration by the technique of scattering X-ray small angle (SAXS). The surfactants Ultranex-18 an Ultranex-18-50 shown the critical micelle concentration in the range of 10-2 mol/L in the hydrocarbons studied. Then, was applied in the study of distillation a concentration range from 0.01 to 0.15 mol/L of the surfactants (Ultranex- 18 and 50). The use of the nonionic surfactant increased the percentage of hydrocarbons in the range from 5 to 9 carbons in comparison to the process carried out without surfactant, and in some experimental conditions the fraction of light compounds in the distilled was over 700% compared to the conventional process. The study showed that increasing the degree of ethoxylation of Ultranex18 to Ultranex-50, the compounds in the range of C5 to C9 reduced the percentage in the distilled, since the increase of the hydrophilic part of the surfactant reduces its solubility in the oil. Finally, was obtained an increase in the degree of recovery of light hydrocarbons, comparing processes with and without surfactant, obtained an increase of 10% and 4% with Ultranex-18 and Ultranex-50, respectively. Thus, it is concluded that the Ultranex- 18 surfactant showed a higher capacity to distillation compared with Ultranex-50 and the application of surfactant on the molecular distillation from petroleum allowed for a greater recovery of light compounds in distillate
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Nowadays, as well as in the past decades, the dumping of biodegradable organic waste in landfill is common practice in Brazil, as well as in most parts of the world. Nevertheless due to its rapid decomposition and release of odors, this practice hamper’s the operation and implementation of a recycling system. These facts encouraged our research to find an efficient system for the management of organic waste, not only for the use of official workers responsible for managing these wastes, but also for non-governmental institutions. The Recycling for Life Community Association – ACREVI (Associação Comunitária Reciclando para a Vida), together with the municipal authorities of Mossoró-RN, Brazil, have assumed the social role of collecting and recycling solid waste produced by most of the local population. However, it was observed that the organic waste it collected was not receiving any treatment. This present work aims to make compost with mixed waste (green waste and organic household), and then do chemical analysis of the material in view to use the waste as organic fertilizer. The objective being: to share the knowledge acquired by putting it into a very simple language accessible to people with little education. The experiment was conducted at ACREVI, Mossoró (RN), and the compost was obtained following the method "windrow", forming three cells (I, II, III) with conical shape, dimensions of 1.6 meters and 2.0 meters in diameter for cells I and II, and 1.0 meters high and 2.0 meters in diameter for cell III. The process was accompanied by analysis: CHN elemental, a variation of cell temperature, humidity, pH, TKN, bulk density, nutrients and heavy metals. Stabilized organic compounds reached the C/N ratio of 10.4/1 cell I and 10.4/1 in the cell II in the cell, showing how good soil conditions, with potential to improve the physical properties of any soil and pH acid soils, has presented the cell III at the end of the process the C/N 26/1, is a high ratio may be associated with the stack size III, thus changing the optimal conditions for the occurrence of the process. The levels of heavy metals in the analyzed compounds were lower than those established by the SDA normative instruction, Nº 27, of 5 June, 2006. The use of pruning trees and grass are used in small-scale composting, while generating a quality compost in the final process, it also created an important condition for a correct sizing of the composting piles. Under the studied conditions it is not advisable to use cells with a height of 1.00 m in height and 2.00 m in diameter, as these do not prevent the rapid dissipation of heat and thus can not be a good product at the end of composting. The composting process in the shed of the association and the preparation of the primer enabled the development of an alternative technology to generate income for members of ACREVI.
Resumo:
In this work we obtain nickel ferrite by the combustion synthesis method whcih involves synthesising in an oven at temperatures of 750oC, 950oC and 125oC. The precursors oxidizing used were nickel nitrate, ferric as an oxidizing and reducing urea (fuel). After obtaining the mixture, the product was deagglomerated and past through a 270 mesh sieve. To assess the structure, morphology, particle size, magnetic and electrical properties of nanoparticles obtained the samples were sintered and characterized by x-ray distraction (XRD), x-ray fluorescence spectroscopy (FRX); scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), vibrating sample magnetometer (MAV ) and electrical permittivity. The results indicated the majority of phase inverse spinel ferrite and Hematite secondary phase nickel and nickel oxide. Through the intensity of the distraction, the average size of the crystallization peaks were half-height width which was calculated using the Scherrer equation. From observing the peaks of all the reflections, it appears that samples are crystal clear with the formation of nanoparticles. Morphologically, the nanoferritas sintered nickel pellet formation was observed with three systems of particle size below 100mn, which favored the formation of soft pellets. The average size of the grains in their micrometric scale. FRX and EDS showed qualitatively the presence of iron elements nickel and oxygen, where through quantitative data we can observe the presence of the secondary phase. The magnetic properties and the saturation magnetization and the coercive field are in accordance with the nickel, ferrite where the curve of hysteresis has aspects of a soft material. Dielectric constant values are below 10 and low tangent loss