77 resultados para Espectros vibracionais
Resumo:
A chemical process optimization and control is strongly correlated with the quantity of information can be obtained from the system. In biotechnological processes, where the transforming agent is a cell, many variables can interfere in the process, leading to changes in the microorganism metabolism and affecting the quantity and quality of final product. Therefore, the continuously monitoring of the variables that interfere in the bioprocess, is crucial to be able to act on certain variables of the system, keeping it under desirable operational conditions and control. In general, during a fermentation process, the analysis of important parameters such as substrate, product and cells concentration, is done off-line, requiring sampling, pretreatment and analytical procedures. Therefore, this steps require a significant run time and the use of high purity chemical reagents to be done. In order to implement a real time monitoring system for a benchtop bioreactor, these study was conducted in two steps: (i) The development of a software that presents a communication interface between bioreactor and computer based on data acquisition and process variables data recording, that are pH, temperature, dissolved oxygen, level, foam level, agitation frequency and the input setpoints of the operational parameters of the bioreactor control unit; (ii) The development of an analytical method using near-infrared spectroscopy (NIRS) in order to enable substrate, products and cells concentration monitoring during a fermentation process for ethanol production using the yeast Saccharomyces cerevisiae. Three fermentation runs were conducted (F1, F2 and F3) that were monitored by NIRS and subsequent sampling for analytical characterization. The data obtained were used for calibration and validation, where pre-treatments combined or not with smoothing filters were applied to spectrum data. The most satisfactory results were obtained when the calibration models were constructed from real samples of culture medium removed from the fermentation assays F1, F2 and F3, showing that the analytical method based on NIRS can be used as a fast and effective method to quantify cells, substrate and products concentration what enables the implementation of insitu real time monitoring of fermentation processes
Resumo:
Systems whose spectra are fractals or multifractals have received a lot of attention in recent years. The complete understanding of the behavior of many physical properties of these systems is still far from being complete because of the complexity of such systems. Thus, new applications and new methods of study of their spectra have been proposed and consequently a light has been thrown on their properties, enabling a better understanding of these systems. We present in this work initially the basic and necessary theoretical framework regarding the calculation of energy spectrum of elementary excitations in some systems, especially in quasiperiodic ones. Later we show, by using the Schr¨odinger equation in tight-binding approximation, the results for the specific heat of electrons within the statistical mechanics of Boltzmann-Gibbs for one-dimensional quasiperiodic systems, growth by following the Fibonacci and Double Period rules. Structures of this type have already been exploited enough, however the use of non-extensive statistical mechanics proposed by Constantino Tsallis is well suited to systems that have a fractal profile, and therefore our main objective was to apply it to the calculation of thermodynamical quantities, by extending a little more the understanding of the properties of these systems. Accordingly, we calculate, analytical and numerically, the generalized specific heat of electrons in one-dimensional quasiperiodic systems (quasicrystals) generated by the Fibonacci and Double Period sequences. The electronic spectra were obtained by solving the Schr¨odinger equation in the tight-binding approach. Numerical results are presented for the two types of systems with different values of the parameter of nonextensivity q
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
One of the best established properties of the single late type evolved stars is that their rotational velocity and lithium content decrease with effective temperature and age. Nevertheless, the root cause of this property, as well as the link between rotation and lithium abundance and, in particular, the effects of binarity on rotation and lithium content in binary systems with evolved component, are not yet completely established. How does the gravitational tides, in binary systems, affects rotational evolution and lithium dilution? Trying to answer these questions, we have carried out an observational survey, in the lithium region centered at the lithium I line A6707.81A, for a large sample of about 100 binary systems with evolved component along the spectral range F, G and K, with the CES spectrometer mounted at the CAT 1.44 m Telescope of the ESO, La Silla, Chile. By combining the abundances of lithium issued from these observations with rotational velocity and orbital parameters, we have found a number of important results. First of all, we confirm that in this class of binary systems rotation is effectively affected by tidal effects. Binary systems with orbital period lower than about 100 days and circular or nearly circular orbits, present rotational velocity enhanced in relation to the single giant stars and to the binary systems with an orbital period larger than 100 days. This is clearly the result of the synchonization between the rotational and orbital motions due to tidal effects. In addition, we have found that lithium abundances in binary systems with giant components present the same gradual decreasing with effective temperature, observed in the single giants of same luminosity class and spectral types. We have found no lithium-rich binary systems, in contrast with single giants. A remarkable result from the present study is the one showing that synchronized binary systems with giant component retains more of their original lithium than the unsynchronized systems. In fact, we have found a possible "inhibited zone", in which synchronized binary systems with giant component having lithium abundance lower than a threshold level should be unusual. Finally, the present study also shows that the binary systems with giant component presenting the highest lithium contents are those with the highest rotation rates
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
In this work, we present a theoretical study of the propagation of electromagnetic waves in multilayer structures called Photonic Crystals. For this purpose, we investigate the phonon-polariton band gaps in periodic and quasi-periodic (Fibonacci-type) multilayers made up of both positive and negative refractive index materials in the terahertz (THz) region. The behavior of the polaritonic band gaps as a function of the multilayer period is investigated systematically. We use a theoretical model based on the formalism of transfer matrix in order to simplify the algebra involved in obtaining the dispersion relation of phonon-polaritons (bulk and surface modes). We also present a quantitative analysis of the results, pointing out the distribution of the allowed polaritonic bandwidths for high Fibonacci generations, which gives good insight about their localization and power laws. We calculate the emittance spectrum of the electromagnetic radiation, in THZ frequency, normally and obliquely incident (s and p polarized modes) on a one-dimensional multilayer structure composed of positive and negative refractive index materials organized periodically and quasi-periodically. We model the negative refractive index material by a effective medium whose electric permittivity is characterized by a phonon-polariton frequency dependent dielectric function, while for the magnetic permeability we have a Drude like frequency-dependent function. Similarity to the one-dimensional photonic crystal, this layered effective medium, called polaritonic Crystals, allow us the control of the electromagnetic propagation, generating regions named polaritonic bandgap. The emittance spectra are determined by means of a well known theoretical model based on Kirchoff s second law, together with a transfer matrix formalism. Our results shows that the omnidirectional band gaps will appear in the THz regime, in a well defined interval, that are independent of polarization in periodic case as well as in quasiperiodic case
Resumo:
The study of sunspots consistently contributed to a better understanding of magnetic phenomena of the Sun, as its activity. It was found with the dynamics of sunspots that the Sun has a rotation period of twenty-seven days around your axis. With the help of Project Sun-As-A-Star that solar spectra obtained for more than thirty years we observed oscillations of both the depth of the spectral line and its equivalent width, and analysis of the return information about the characteristics of solar magnetism. It also aims to find patterns of solar magnetic activity cycle and the average period of rotation of the Sun will indicate the spectral lines that are sensitive to magnetic activity and which are not. Sensitive lines how Ti II 5381.0 Å stands as the best indicator of the solar rotation period and also shows different periods of rotation cycles of minimum and maximum magnetic activity. It is the first time we observe clearly distinct rotation periods in the different cycles. The analysis also shows that Ca II 8542.1 Å and HI 6562.0 Å indicate the cycle of magnetic activity of eleven years. Some spectral lines no indicated connection with solar activity, this result can help us search for programs planets using spectroscopic models. Data analysis was performed using the Lomb-Scargle method that makes the time series analysis for unequally spaced data. Observe different rotation periods in the cycles of magnetic activity accounts for a discussion has been debated for many decades. We verified that spectroscopy can also specify the period of stellar rotation, thus being able to generalize the method to other stars
Resumo:
In this paper we investigate the spectra of band structures and transmittance in magnonic quasicrystals that exhibit the so-called deterministic disorders, specifically, magnetic multilayer systems, which are built obeying to the generalized Fibonacci (only golden mean (GM), silver mean (SM), bronze mean (BM), copper mean (CM) and nickel mean (NM) cases) and k-component Fibonacci substitutional sequences. The theoretical model is based on the Heisenberg Hamiltonian in the exchange regime, together with the powerful transfer matrix method, and taking into account the RPA approximation. The magnetic materials considered are simple cubic ferromagnets. Our main interest in this study is to investigate the effects of quasiperiodicity on the physical properties of the systems mentioned by analyzing the behavior of spin wave propagation through the dispersion and transmission spectra of these structures. Among of these results we detach: (i) the fragmentation of the bulk bands, which in the limit of high generations, become a Cantor set, and the presence of the mig-gap frequency in the spin waves transmission, for generalized Fibonacci sequence, and (ii) the strong dependence of the magnonic band gap with respect to the parameters k, which determines the amount of different magnetic materials are present in quasicrystal, and n, which is the generation number of the sequence k-component Fibonacci. In this last case, we have verified that the system presents a magnonic band gap, whose width and frequency region can be controlled by varying k and n. In the exchange regime, the spin waves propagate with frequency of the order of a few tens of terahertz (THz). Therefore, from a experimental and technological point of view, the magnonic quasicrystals can be used as carriers or processors of informations, and the magnon (the quantum spin wave) is responsible for this transport and processing
Resumo:
In this work we study the spectrum (bulk and surface modes) of exciton-polaritons in infinite and semi-infinite binary superlattices (such as, ···ABABA···), where the semiconductor medium (A), whose dielectric function depends on the frequency and the wavevector, alternating with a standard dielectric medium B. Here the medium A will be modeled by a nitride III-V semiconductor whose main characteristic is a wide-direct energy gap Eg. In particular, we consider the numerical values of gallium nitride (GaN) with a crystal structure wurtzite type. The transfer-matrix formalism is used to find the exciton-polariton dispersion relation. The results are obtained for both s (TE mode: transverse electric) and p (TM mode: transverse magnetic) polarizations, using three diferent kind of additional boundary conditions (ABC1, 2 e 3) besides the standard Maxwell's boundary conditions. Moreover, we investigate the behavior of the exciton-polariton modes for diferent ratios of the thickness of the two alternating materials forming the superlattice. The spectrums shows a confinement of the exciton-polariton modes due to the geometry of the superlattice. The method of Attenuated Total Reflection (ATR) and Raman scattering are the most adequate for probing this excitations
Resumo:
The research behind this master dissertation started with the installation of a DC sputtering system, from its first stage, the adaptation of a refrigerating system, passing by the introduction of a heating system for the chamber using a thermal belt, until the deposition of a series of Fe/MgO(100) single crystal nanometric film samples. The deposition rates of some materials such as Fe, Py and Cu were investigated through an Atomic Force Microscope (AFM). For the single crystal samples, five of them have the same growth parameters and a thickness of 250Å, except for the temperature, which varies from fifty degrees from one to another, from 100ºC to 300ºC. Three other samples also have the same deposition parameters and a temperature of 300ºC, but with thickness of 62,5Å, 150Å, and 250Å. Magneto-optical Kerr Effect (MOKE) of the magnetic curves measurements and Ferromagnetic Resonance (FMR) were made to in order to study the influence of the temperature and thickness on the sample s magnetic properties. In the present dissertation we discuss such techniques, and the experimental results are interpreted using phenomenological models, by simulation, and discussed from a physical point of view, taking into account the system s free magnetic energy terms. The results show the growth of the cubic anisotropy field (Hac) as the sample s deposition temperature increases, presenting an asymptotic behavior, similar to the characteristic charging curve of a capacitor in a RC circuit. A similar behavior was also observed for the Hac due to the increase in the samples thicknesses. The 250˚A sample, growth at 300°C, presented a Hac field close to the Fe bulk value
Resumo:
Chitosan derivatives were prepared by reductive alkylation using glutaraldehyde and 3-amino-1-propanol. The reducing agent used was the sodium borohydride. Tests of solubility, stability and viscosity were performed in order to evaluate these parameters effects in the reaction conditions (molar ratio of the reactants and presence of nitrogen in the reaction system). The molecular structure of commercial chitosan was determined by infrared (IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR). The intrinsic viscosity and average molecular weight of the chitosan were determined by viscosimetry in 0.3 M acetic acid aqueous solution 0.2 M sodium acetate at 25 ºC. The derivatives of chitosan soluble in aqueous acidic medium were characterized by 1H NMR. The rheological behavior of the chitosan and of the derivative of chitosan (sample QV), which presented the largest viscosity, were studied as a function of polymer concentration, temperature and ionic strength of the medium. The results of characterization of the commercial chitosan (the degree of deacetylation obtained equal 78.45 %) used in this work confirmed a sample of low molar weight (Mv = 3.57 x 104 g/mol) and low viscosity (intrinsic viscosity = 213.56 mL/g). The chemical modification of the chitosan resulted in derivatives with thickening action. The spectra of 1H NMR of the soluble derivatives in acid aqueous medium suggested the presence of hydrophobic groups grafted into chitosan in function of the chemical modification. The solubility of the derivatives of chitosan in 0.25 M acetic acid aqueous solution decreased with increase of the molar ratio of the glutaraldehyde and 3-amino-1-propanol in relation to the chitosan. The presence of nitrogen and larger amount of reducing agent in reaction system contributed to the increase of the solubility, the stability and the viscosity of the systems. The viscosity of the polymeric suspensions in function of the shear rate increased significantly with polymer concentration, suggesting the formation of strong intermolecular associations. The chitosan presented pseudoplastic behavior with the increase in polymer concentration at a low shear rate. The derivative QV presented pseudoplastic behavior at all concentrations used and in a large range of shear rate. The viscosity of chitosan in solution decreased with an increase of the temperature and with the presence of salt. However, there was an increase of the viscosity of the chitosan solution at higher temperature (65 ºC) and ionic strength of the medium which were promoted by hydrophobic associating of the acetamide groups. The solutions of the chitosan derivatives (sample QV) were significantly more viscous than chitosan solution and showed higher thermal stability in the presence of salt as a function of the hydrophobic groups grafted into chitosan backbone
Resumo:
PAHs (Polycyclic Aromatic Hydrocarbons) are a group of organic substances which receive considerable attention because of the carcinogenic and mutagenic properties of some of them. It is therefore important to determine the PAHs in different environmental matrices. Several studies have shown the use of gas chromatography coupled to mass spectrometry as a technique for quantification of PAHs by presenting excellent detection limits. This study aimed to develop an analytical methodology for the determination of 16 PAHs listed by the USEPA, test two methods for extraction of PAHs in water from a 23 factorial design, quantify them through the analytical technique coupled to gas chromatography mass spectrometry (GC/MS) using the method developed, and finally apply the results in chemometrics. The sample was synthesized and subjected to tests of the 23 factorial design, which has the factors: the type of extraction technique (ultrasound and digester), the ratio solvent / sample (1:1 and 1:3) and the type of solvent (dichloromethane / hexane and acetone / dichloromethane). The responses of eight combinations of the factorial design were obtained from the quantification by external calibration in GC/MS. The quantification method was developed from an optimized adaptation of the USEPA Method 8270. We used the full scan mode as a way of acquiring the mass spectra of 16 PAHs. The time in which the samples were subjected to ultrasound was fixed at 10 min and held an investigation to establish the conditions of power and time in the digester. We had the best response in the investigation of the digester power of 100 watts and the time of six minutes. The factorial design of liquid-liquid extraction showed that the most representative factors were: the use of the digester as extraction technique, the ratio solvent / sample 1:1 and the use of a 1:1 mixture of dichloromethane / hexane as a solvent more suitable. These results showed that the 1:1 mixture of dichloromethane / hexane is an excellent mixture to recover the extraction of PAHs an aqueous sample using the microwave digester. The optimization of the method of separation, identification and quantification of PAHs in the GC/MS was valid for 16 PAHs present in each chromatogram of the samples
Resumo:
This study aimed to apply, thermogravimetriy /derivative Thermogravimetriy (TG/DTG), differential scanning calorimetry (DSC), Differential Thermal Analysis (DTA), to conduct a comparative study on drug reference, generic and whose active principles are similar captopril hydrochlorothiazide, ampicillin, paracetamol, aspirin and mebendazole sold in local pharmacies. Samples of the active ingredients and dosage forms were also characterized by absorption infrared spectroscopy (IR), X-ray diffraction (XRD) and microscopy scanning electron (SEM). The TG / DTG curves showed a general similarity in the thermal behavior of the samples, but also showed the influence of excipients on the thermal stability. The DSC curve of the generic base hydrochlorothiazide showed no peak on the fusion of the drug due to interference of lactose as a diluent, which causes interaction with the active principle causing their degradation before the merger. The DSC curves of the drugs consisting of paracetamol showed reproducibility at the melting point of the active and the other thermal events. The DSC result of binary mixtures involving captopril / magnesium stearate and mebendazole/magnesium stearate showed possible interactions or incompatibilities evidenced by the displacement of the melting point of both drugs. The other mixtures showed no change. The infrared spectra presented were very similar, indicating the presence of functional groups characteristic of the constituents of the samples. The X-ray diffraction showed peaks indicative of crystalline structure of the active ingredients as well as some of the ingredients in the formulation of the drug and the micrographs indicate a general heterogeneity in the size distribution of particles in the samples
Resumo:
The present study utilized the thermogravimetry (TG) and optical emission spectroscopy with inductively coupled plasma - ICP / OES to determine the calcium content in tablets of carbonate, citrate and calcium lactate used in the treatment of osteoporosis. The samples were characterized by IR, SEM, TG / DTG, DTA, DSC and XRD. The thermal analysis evaluated the thermal stability and physical-chemical events and showed that the excipients influence the decomposition of active ingredients. The results of thermogravimetry indicated that the decomposition temperature of the active CaCO3 (T = 630.2 °C) is lower compared to that obtained in samples of the tablets (633.4 to 655.2 °C) except for sample AM 2 (Ti = 613.8 oC). In 500.0 °C in the samples of citrate and calcium lactate, as well as their respective active principles had already been formed calcium carbonate. The use of N2 atmosphere resulted in shifting the initial and final temperature related to the decomposition of CaCO3. In the DTA and DSC curves were observed endo and exothermic events for the samples of tablets and active ingredients studied. The infrared spectra identified the main functional groups in all samples of active ingredients, excipients and tablets studied, such as symmetric and asymmetric stretches of the groups OH, CH, C = O. Analysis by X-ray diffraction showed that all samples are crystalline and that the final residue showed peaks indicative of the presence of calcium hydroxide by the reaction of calcium oxide with moisture of the air. Although the samples AM 1, AM 2, AM 3 and AM 6 in their formulations have TiO2 and SiO2 peaks were not observed in X-ray diffractograms of these compounds. The results obtained by TGA to determine the calcium content of the drugs studied were satisfactory when compared with those obtained by ICP-OES. In the AM 1 tablet was obtained the content of 35.37% and 32.62% for TG by ICP-OES, at 6 AM a percentage of 17.77% and 16.82% and for AM 7 results obtained were 8.93% for both techniques, showing that the thermogravimetry can be used to determine the percentage of calcium in tablets. The technique offers speed, economy in the use of samples and procedures eliminating the use of acid reagents in the process of the sample and efficiency results.
Resumo:
This work involved the synthesis, characterization and proposing the molecular structure of coordination compounds involving ligands pyrazine-2-carboxamide (PZA) and 4- hydrazide acidic pyridine carboxylic (INH) and metals of the first transition series (M = Co2+, Ni2+ and Cu2+). For the characterization of the compounds used were analytical techniques such as infrared absorption spectroscopy average (FT-IR) molar conductivity measurements, CHN elemental analysis, EDTA Complexometric, measurement of melting point, X-ray diffraction by powder method, Thermogravimetry (TG) and Differential Thermal Analysis (DTA) and Simultaneous Differential Scanning Calorimetry (DSC). The absorption spectra in the infrared region suggested that the ligand coordination to the metal center occurs through the carbonyl oxygen atom and nitrogen alpha pyrazine ring to those complexes formed with PZA. For INH complexes with metal-ligand coordination is through the carbonyl oxygen and nitrogen of the terminal hydrazide grouping. The conductivity measurements of the complexes in aqueous solution they suggest to all behavior of the type 1:2 electrolytes, and conduct of non-electrolytes in acetonitrile. The results obtained by CHN elemental analysis and EDTA Complexometric allowed to infer the stoichiometry of the compounds synthesized. For all of the complexes obtained was possible to record the melting points, neither of which melted near the melting temperature of the free ligands. The X-ray diffraction showed that the complexes of pyrazinamide exhibited diffraction lines, suggesting that these compounds are crystalline, while compounds of isoniazid, with the exception of cobalt, exhibited diffraction lines, indicating that they are crystalline. The results from the TG-DTA and DSC allowed information regarding the dehydration and thermal decomposition of these complexes