28 resultados para Mohandas Gandhi


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to study the fluctuation structure of physical properties of oil well profiles. It was used as technique the analysis of fluctuations without trend (Detrended Fluctuation Analysis - DFA). It has been made part of the study 54 oil wells in the Campo de Namorado located in the Campos Basin in Rio de Janeiro. We studied five sections, namely: sonic, density, porosity, resistivity and gamma rays. For most of the profiles , DFA analysis was available in the literature, though the sonic perfile was estimated with the aid of a standard algorithm. The comparison between the exponents of DFA of the five profiles was performed using linear correlation of variables, so we had 10 comparisons of profiles. Our null hypothesis is that the values of DFA for the various physical properties are independent. The main result indicates that no refutation of the null hypothesis. That is, the fluctuations observed by DFA in the profiles do not have a universal character, that is, in general the quantities display a floating structure of their own. From the ten correlations studied only the profiles of density and sonic one showed a significant correlation (p> 0.05). Finally these results indicate that one should use the data from DFA with caution, because, in general, based on geological analysis DFA different profiles can lead to disparate conclusions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the growth of energy consumption worldwide, conventional reservoirs, the reservoirs called "easy exploration and production" are not meeting the global energy demand. This has led many researchers to develop projects that will address these needs, companies in the oil sector has invested in techniques that helping in locating and drilling wells. One of the techniques employed in oil exploration process is the reverse time migration (RTM), in English, Reverse Time Migration, which is a method of seismic imaging that produces excellent image of the subsurface. It is algorithm based in calculation on the wave equation. RTM is considered one of the most advanced seismic imaging techniques. The economic value of the oil reserves that require RTM to be localized is very high, this means that the development of these algorithms becomes a competitive differentiator for companies seismic processing. But, it requires great computational power, that it still somehow harms its practical success. The objective of this work is to explore the implementation of this algorithm in unconventional architectures, specifically GPUs using the CUDA by making an analysis of the difficulties in developing the same, as well as the performance of the algorithm in the sequential and parallel version

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho, através de simulações computacionais, identificamos os fenômenos físicos associados ao crescimento e a dinâmica de polímeros como sistemas complexos exibindo comportamentos não linearidades, caos, criticalidade auto-organizada, entre outros. No primeiro capítulo, iniciamos com uma breve introdução onde descrevemos alguns conceitos básicos importantes ao entendimento do nosso trabalho. O capítulo 2 consiste na descrição do nosso estudo da distribuição de segmentos num polímero ramificado. Baseado em cálculos semelhantes aos usados em cadeias poliméricas lineares, utilizamos o modelo de crescimento para polímeros ramificados (Branched Polymer Growth Model - BPGM) proposto por Lucena et al., e analisamos a distribuição de probabilidade dos monômeros num polímero ramificado em 2 dimensões, até então desconhecida. No capítulo seguinte estudamos a classe de universalidade dos polímeros ramificados gerados pelo BPGM. Utilizando simulações computacionais em 3 dimensões do modelo proposto por Lucena et al., calculamos algumas dimensões críticas (dimensões fractal, mínima e química) para tentar elucidar a questão da classe de universalidade. Ainda neste Capítulo, descrevemos um novo modelo para a simulação de polímeros ramificados que foi por nós desenvolvido de modo a poupar esforço computacional. Em seguida, no capítulo 4 estudamos o comportamento caótico do crescimento de polímeros gerados pelo BPGM. Partimos de polímeros criticamente organizados e utilizamos uma técnica muito semelhante aquela usada em transições de fase em Modelos de Ising para estudar propagação de danos chamada de Distância de Hamming. Vimos que a distância de Hamming para o caso dos polímeros ramificados se comporta como uma lei de potência, indicando um caráter não-extensivo na dinâmica de crescimento. No Capítulo 5 analisamos o movimento molecular de cadeias poliméricas na presença de obstáculos e de gradientes de potenciais. Usamos um modelo generalizado de reptação para estudar a difusão de polímeros lineares em meios desordenados. Investigamos a evolução temporal destas cadeias em redes quadradas e medimos os tempos característicos de transporte t. Finalizamos esta dissertação com um capítulo contendo a conclusão geral denoss o trabalho (Capítulo 6), mais dois apêndices (Apêndices A e B) contendo a fenomenologia básica para alguns conceitos que utilizaremos ao longo desta tese (Fractais e Percolação respectivamente) e um terceiro e ´ultimo apêndice (Apêndice C) contendo uma descrição de um programa de computador para simular o crescimentos de polímeros ramificados em uma rede quadrada

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we investigate physical problems which present a high degree of complexity using tools and models of Statistical Mechanics. We give a special attention to systems with long-range interactions, such as one-dimensional long-range bondpercolation, complex networks without metric and vehicular traffic. The flux in linear chain (percolation) with bond between first neighbor only happens if pc = 1, but when we consider long-range interactions , the situation is completely different, i.e., the transitions between the percolating phase and non-percolating phase happens for pc < 1. This kind of transition happens even when the system is diluted ( dilution of sites ). Some of these effects are investigated in this work, for example, the extensivity of the system, the relation between critical properties and the dilution, etc. In particular we show that the dilution does not change the universality of the system. In another work, we analyze the implications of using a power law quality distribution for vertices in the growth dynamics of a network studied by Bianconi and Barabási. It incorporates in the preferential attachment the different ability (fitness) of the nodes to compete for links. Finally, we study the vehicular traffic on road networks when it is submitted to an increasing flux of cars. In this way, we develop two models which enable the analysis of the total flux on each road as well as the flux leaving the system and the behavior of the total number of congested roads

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil prospecting is one of most complex and important features of oil industry Direct prospecting methods like drilling well logs are very expensive, in consequence indirect methods are preferred. Among the indirect prospecting techniques the seismic imaging is a relevant method. Seismic method is based on artificial seismic waves that are generated, go through the geologic medium suffering diffraction and reflexion and return to the surface where they are recorded and analyzed to construct seismograms. However, the seismogram contains not only actual geologic information, but also noise, and one of the main components of the noise is the ground roll. Noise attenuation is essential for a good geologic interpretation of the seismogram. It is common to study seismograms by using time-frequency transformations that map the seismic signal into a frequency space where it is easier to remove or attenuate noise. After that, data is reconstructed in the original space in such a way that geologic structures are shown in more detail. In addition, the curvelet transform is a new and effective spectral transformation that have been used in the analysis of complex data. In this work, we employ the curvelet transform to represent geologic data using basis functions that are directional in space. This particular basis can represent more effectively two dimensional objects with contours and lines. The curvelet analysis maps real space into frequencies scales and angular sectors in such way that we can distinguish in detail the sub-spaces where is the noise and remove the coefficients corresponding to the undesired data. In this work we develop and apply the denoising analysis to remove the ground roll of seismograms. We apply this technique to a artificial seismogram and to a real one. In both cases we obtain a good noise attenuation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The new technique for automatic search of the order parameters and critical properties is applied to several well-know physical systems, testing the efficiency of such a procedure, in order to apply it for complex systems in general. The automatic-search method is combined with Monte Carlo simulations, which makes use of a given dynamical rule for the time evolution of the system. In the problems inves¬tigated, the Metropolis and Glauber dynamics produced essentially equivalent results. We present a brief introduction to critical phenomena and phase transitions. We describe the automatic-search method and discuss some previous works, where the method has been applied successfully. We apply the method for the ferromagnetic fsing model, computing the critical fron¬tiers and the magnetization exponent (3 for several geometric lattices. We also apply the method for the site-diluted ferromagnetic Ising model on a square lattice, computing its critical frontier, as well as the magnetization exponent f3 and the susceptibility exponent 7. We verify that the universality class of the system remains unchanged when the site dilution is introduced. We study the problem of long-range bond percolation in a diluted linear chain and discuss the non-extensivity questions inherent to long-range-interaction systems. Finally we present our conclusions and possible extensions of this work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard kinetic theory for a nonrelativistic diluted gas is generalized in the spirit of the nonextensive statistic distribution introduced by Tsallis. The new formalism depends on an arbitrary q parameter measuring the degree of nonextensivity. In the limit q = 1, the extensive Maxwell-Boltzmann theory is recovered. Starting from a purely kinetic deduction of the velocity q-distribution function, the Boltzmann H-teorem is generalized for including the possibility of nonextensive out of equilibrium effects. Based on this investigation, it is proved that Tsallis' distribution is the necessary and sufficient condition defining a thermodynamic equilibrium state in the nonextensive context. This result follows naturally from the generalized transport equation and also from the extended H-theorem. Two physical applications of the nonextensive effects have been considered. Closed analytic expressions were obtained for the Doppler broadening of spectral lines from an excited gas, as well as, for the dispersion relations describing the eletrostatic oscillations in a diluted electronic plasma. In the later case, a comparison with the experimental results strongly suggests a Tsallis distribution with the q parameter smaller than unity. A complementary study is related to the thermodynamic behavior of a relativistic imperfect simple fluid. Using nonequilibrium thermodynamics, we show how the basic primary variables, namely: the energy momentum tensor, the particle and entropy fluxes depend on the several dissipative processes present in the fluid. The temperature variation law for this moving imperfect fluid is also obtained, and the Eckart and Landau-Lifshitz formulations are recovered as particular cases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we study the application of spectral representations to the solution of problems in seismic exploration, the synthesis of fractal surfaces and the identification of correlations between one-dimensional signals. We apply a new approach, called Wavelet Coherency, to the study of stratigraphic correlation in well log signals, as an attempt to identify layers from the same geological formation, showing that the representation in wavelet space, with introduction of scale domain, can facilitate the process of comparing patterns in geophysical signals. We have introduced a new model for the generation of anisotropic fractional brownian surfaces based on curvelet transform, a new multiscale tool which can be seen as a generalization of the wavelet transform to include the direction component in multidimensional spaces. We have tested our model with a modified version of the Directional Average Method (DAM) to evaluate the anisotropy of fractional brownian surfaces. We also used the directional behavior of the curvelets to attack an important problem in seismic exploration: the atenuation of the ground roll, present in seismograms as a result of surface Rayleigh waves. The techniques employed are effective, leading to sparse representation of the signals, and, consequently, to good resolutions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we address two issues of broad conceptual and practical relevance in the study of complex networks. The first is associated with the topological characterization of networks while the second relates to dynamical processes that occur on top of them. Regarding the first line of study, we initially designed a model for networks growth where preferential attachment includes: (i) connectivity and (ii) homophily (links between sites with similar characteristics are more likely). From this, we observe that the competition between these two aspects leads to a heterogeneous pattern of connections with the topological properties of the network showing quite interesting results. In particular, we emphasize that there is a region where the characteristics of sites play an important role not only for the rate at which they get links, but also for the number of connections which occur between sites with similar and dissimilar characteristics. Finally, we investigate the spread of epidemics on the network topology developed, whereas its dissemination follows the rules of the contact process. Using Monte Carlo simulations, we show that the competition between states (infected/healthy) sites, induces a transition between an active phase (presence of sick) and an inactive (no sick). In this context, we estimate the critical point of the transition phase through the cumulant Binder and ratio between moments of the order parameter. Then, using finite size scaling analysis, we determine the critical exponents associated with this transition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation briefly presents the random graphs and the main quantities calculated from them. At the same time, basic thermodynamics quantities such as energy and temperature are associated with some of their characteristics. Approaches commonly used in Statistical Mechanics are employed and rules that describe a time evolution for the graphs are proposed in order to study their ergodicity and a possible thermal equilibrium between them

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant observational effort has been directed to unveiling the nature of the so-called dark energy. However, given the large number of theoretical possibilities, it is possible that this a task cannot be based only on observational data. In this thesis we investigate the dark energy via a thermodynamics approach, i.e., we discuss some thermodynamic properties of this energy component assuming a general time-dependent equation-of-state (EoS) parameter w(a) = w0 + waf(a), where w0 and wa are constants and f(a) may assume different forms. We show that very restrictive bounds can be placed on the w0 - wa space when current observational data are combined with the thermodynamic constraints derived. Moreover, we include a non-zero chemical potential μ and a varying EoS parameter of the type ω(a) = ω0 + F(a), therefore more general, in this thermodynamical description. We derive generalized expressions for the entropy density and chemical potential, noting that the dark energy temperature T and μ evolve in the same way in the course of the cosmic expansion. The positiveness of entropy S is used to impose thermodynamic bounds on the EoS parameter ω(a). In particular, we find that a phantom-like behavior ω(a) < −1 is allowed only when the chemical potential is a negative quantity (μ < 0). Thermodynamically speaking, a complete treatment has been proposed, when we address the interaction between matter and energy dark

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the generalization of thermodynamic quantity q-deformed by q-algebra that describes a general algebra for bosons and fermions . The motivation for our study stems from an interest to strengthen our initial ideas, and a possible experimental application. On our journey, we met a generalization of the recently proposed formalism of the q-calculus, which is the application of a generalized sequence described by two parameters deformation positive real independent and q1 and q2, known for Fibonacci oscillators . We apply the wellknown problem of Landau diamagnetism immersed in a space D-dimensional, which still generates good discussions by its nature, and dependence with the number of dimensions D, enables us future extend its application to systems extra-dimensional, such as Modern Cosmology, Particle Physics and String Theory. We compare our results with some experimentally obtained performing major equity. We also use the formalism of the oscillators to Einstein and Debye solid, strengthening the interpretation of the q-deformation acting as a factor of disturbance or impurity in a given system, modifying the properties of the same. Our results show that the insertion of two parameters of disorder, allowed a wider range of adjustment , i.e., enabling change only the desired property, e.g., the thermal conductivity of a same element without the waste essence

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to derive theWard Identity for the low energy effective theory of a fermionic system in the presence of a hyperbolic Fermi surface coupled with a U(1) gauge field in 2+1 dimensions. These identities are important because they establish requirements for the theory to be gauge invariant. We will see that the identity associated Ward Identity (WI) of the model is not preserved at 1-loop order. This feature signalizes the presence of a quantum anomaly. In other words, a classical symmetry is broken dynamically by quantum fluctuations. Furthermore, we are considering that the system is close to a Quantum Phase Transitions and in vicinity of a Quantum Critical Point the fermionic excitations near the Fermi surface, decay through a Landau damping mechanism. All this ingredients need to be take explicitly to account and this leads us to calculate the vertex corrections as well as self energies effects, which in this way lead to one particle propagators which have a non-trivial frequency dependence