60 resultados para Modelos de dados de contagem
Resumo:
Os impactos das variações climáticas tem sido um tema amplamente pesquisado na macroeconomia mundial e também em setores como agricultura, energia e seguros. Já para o setor de varejo, uma busca nos principais periódicos brasileiros não retornou nenhum estudo específico. Em economias mais desenvolvidas produtos de seguros atrelados ao clima são amplamente negociados e através deste trabalho visamos também avaliar a possibilidade de desenvolvimento deste mercado no Brasil. O presente trabalho buscou avaliar os impactos das variações climáticas nas vendas do varejo durante período de aproximadamente 18 meses (564 dias) para 253 cidades brasileiras. As informações de variações climáticas (precipitação, temperatura, velocidade do vento, umidade relativa, insolação e pressão atmosférica) foram obtidas através do INMET (Instituto Nacional de Meteorologia) e cruzadas com as informações transacionais de até 206 mil clientes ativos de uma amostra não balanceada, oriundos de uma instituição financeira do ramo de cartões de crédito. Ambas as bases possuem periodicidade diária. A metodologia utilizada para o modelo econométrico foram os dados de painel com efeito fixo para avaliação de dados longitudinais através dos softwares de estatística / econometria EViews (software proprietário da IHS) e R (software livre). A hipótese nula testada foi de que o clima influencia nas decisões de compra dos clientes no curto prazo, hipótese esta provada pelas análises realizadas. Assumindo que o comportamento do consumidor do varejo não muda devido à seleção do meio de pagamento, ao chover as vendas do varejo em moeda local são impactadas negativamente. A explicação está na redução da quantidade total de transações e não o valor médio das transações. Ao excluir da base as cidades de São Paulo e Rio de Janeiro não houve alteração na significância e relevância dos resultados. Por outro lado, a chuva possui efeito de substituição entre as vendas online e offline. Quando analisado setores econômicos para observar se há comportamento diferenciado entre consumo e compras não observou-se alteração nos resultados. Ao incluirmos variáveis demográficas, concluímos que as mulheres e pessoas com maior faixa de idade apresentam maior histórico de compras. Ao avaliar o impacto da chuva em um determinado dia e seu impacto nos próximos 6 à 29 dias observamos que é significante para a quantidade de transações porém o impacto no volume de vendas não foi significante.
Resumo:
Trata da postura de equipes de desenvolvimento de sistemas, no ambiente de planejamento organizacional onde o objetivo a ser seguido é definido pelo negócio em si, independente das diversas variáveis de influência.
Resumo:
O trabalho tem como objetivo aplicar uma modelagem não linear ao Produto Interno Bruto brasileiro. Para tanto foi testada a existência de não linearidade do processo gerador dos dados com a metodologia sugerida por Castle e Henry (2010). O teste consiste em verificar a persistência dos regressores não lineares no modelo linear irrestrito. A seguir a série é modelada a partir do modelo autoregressivo com limiar utilizando a abordagem geral para específico na seleção do modelo. O algoritmo Autometrics é utilizado para escolha do modelo não linear. Os resultados encontrados indicam que o Produto Interno Bruto do Brasil é melhor explicado por um modelo não linear com três mudanças de regime, que ocorrem no inicio dos anos 90, que, de fato, foi um período bastante volátil. Através da modelagem não linear existe o potencial para datação de ciclos, no entanto os resultados encontrados não foram suficientes para tal análise.
Resumo:
O mercado de crédito vem ganhando constantemente mais espaço na economia brasileira nos últimos anos. Haja vista isto, o risco de crédito, que tenta medir a perda com operações de crédito, tem fundamental importância e, neste contexto, a perda esperada é, sem dúvida, tema chave. Usualmente, a perda esperada relativa, EL (%), é modelada como o produto dos parâmetros de risco PD (probabilidade de default) e LGD (perda dado o default) pressupondo a independência dos mesmos. Trabalhos recentes mostram que pode haver oportunidade em melhorar o ajuste com a modelagem conjunta da perda, além da retirada da forte premissa de independência dos fatores. O presente trabalho utiliza a distribuição beta inflacionada, modelo BEINF da classe GAMLSS, para o ajuste da perda esperada relativa através de uma base de dados reais disponibilizada pela empresa Serasa Experian. Os resultados mostram que o modelo traz um bom ajuste e que há oportunidade de ganhos em sua utilização na modelagem da EL(%).O mercado de crédito vem ganhando constantemente mais espaço na economia brasileira nos últimos anos. Haja vista isto, o risco de crédito, que tenta medir a perda com operações de crédito, tem fundamental importância e, neste contexto, a perda esperada é, sem dúvida, tema chave. Usualmente, a perda esperada relativa, EL (%), é modelada como o produto dos parâmetros de risco PD (probabilidade de default) e LGD (perda dado o default) pressupondo a independência dos mesmos. Trabalhos recentes mostram que pode haver oportunidade em melhorar o ajuste com a modelagem conjunta da perda, além da retirada da forte premissa de independência dos fatores. O presente trabalho utiliza a distribuição beta inflacionada, modelo BEINF da classe GAMLSS, para o ajuste da perda esperada relativa através de uma base de dados reais disponibilizada pela empresa Serasa Experian. Os resultados mostram que o modelo traz um bom ajuste e que há oportunidade de ganhos em sua utilização na modelagem da EL(%).
Resumo:
Mandelbrot (1971) demonstrou a importância de considerar dependências de longo prazo na precificação de ativos - o método tradicional para mensurá-las, encontrado em Hurst (1951), faz uso da estatística R/S. Paralelamente a isso, Box e Jenkins (1976; edição original de 1970) apresentaram sua famosa metodologia para determinação da ordem dos parâmetros de modelos desenvolvidos no contexto de processos com memória de curto prazo, conhecidos por ARIMA (acrônimo do inglês Autoregressive Integrated Moving Average). Estimulados pela percepção de que um modelo que pretenda representar fielmente o processo gerador de dados deva explicar tanto a dinâmica de curto prazo quanto a de longo prazo, Granger e Joyeux (1980) e Hosking (1981) introduziram os modelos ARFIMA (de onde o F adicionado vem de Fractionally), uma generalização da classe ARIMA, nos quais a dependência de longo prazo estimada é relacionada ao valor do parâmetro de integração. Pode-se dizer que a partir de então processos com alto grau de persistência passaram a atrair cada vez mais o interesse de pesquisadores, o que resultou no desenvolvimento de outros métodos para estimá-la, porém sem que algum tenha se sobressaído claramente – e é neste ponto que o presente trabalho se insere. Por meio de simulações, buscou-se: (1) classificar diversos estimadores quanto a sua precisão, o que nos obrigou a; (2) determinar parametrizações razoáveis desses, entendidas aqui como aquelas que minimizam o viés, o erro quadrático médio e o desvio-padrão. Após rever a literatura sobre o tema, abordar estes pontos se mostrou necessário para o objetivo principal: elaborar estratégias de negociação baseadas em projeções feitas a partir da caracterização de dependências em dados intradiários, minuto a minuto, de ações e índices de ações. Foram analisadas as séries de retornos da ação Petrobras PN e do Índice Bovespa, com dados de 01/04/2013 a 31/03/2014. Os softwares usados foram o S-Plus e o R.
Resumo:
Com o objetivo de mostrar uma aplicação dos modelos da família GARCH a taxas de câmbio, foram utilizadas técnicas estatísticas englobando análise multivariada de componentes principais e análise de séries temporais com modelagem de média e variância (volatilidade), primeiro e segundo momentos respectivamente. A utilização de análise de componentes principais auxilia na redução da dimensão dos dados levando a estimação de um menor número de modelos, sem contudo perder informação do conjunto original desses dados. Já o uso dos modelos GARCH justifica-se pela presença de heterocedasticidade na variância dos retornos das séries de taxas de câmbio. Com base nos modelos estimados foram simuladas novas séries diárias, via método de Monte Carlo (MC), as quais serviram de base para a estimativa de intervalos de confiança para cenários futuros de taxas de câmbio. Para a aplicação proposta foram selecionadas taxas de câmbio com maior market share de acordo com estudo do BIS, divulgado a cada três anos.
Resumo:
O presente trabalho utiliza os dados disponibilizados pela BM&FBovespa para analisar as ações da Petrobrás para os meses compreendidos entre julho e agosto de 2010 e outubro de 2008. Primeiramente, apresentamos uma discussão detalhada sobre a manipulação desses dados, na qual explicitamos a impossibilidade de se usar o mid-price quote devido ao número elevado de ofertas de compra/venda com preços muito elevados/baixos. Verificamos alguns dos fatos estilizados empíricos apontados por Cont (2001), entre outros consagrados na literatura de microestrutura. Em geral, os dados replicaram os fatos estilizados. Aplicamos o filtro proposto por Brownlees e Gallo (2006) às ações da Petrobrás e analisamos a sensibilidade do número de possíveis outliers encontrados pelo filtro a variação dos parâmetros desse filtro. Propomos utilizar o critério de Akaike para ordenar e selecionar modelos de duração condicional cujas amostras de duração possuem tamanhos distintos. Os modelos selecionados, nem sempre são aqueles em que os dados foram filtrados. Para o ajuste ACD (1,1), quando considerados apenas os modelos bem ajustados (resíduos não autocorrelacionados), o critério de Akaike indica como melhor modelo aquele em que os dados não foram filtrados.
Previsão da expedição de papelão ondulado a partir de modelos com variáveis agregadas e desagregadas
Resumo:
O presente trabalho visa comparar o poder preditivo das previsões feitas a partir de diferentes metodologias aplicadas para a série de expedição brasileira de papelão ondulado. Os dados de expedição de papelão ondulado serão decompostos pelas categorias industriais de destino das caixas e serão feitos modelos do tipo SARIMA univariados para cada setor. As previsões das séries desagregadas serão então agregadas, para compor a previsão da série total de expedição. A previsão feita a partir da somatória das categorias industriais será comparada com um SARIMA univariado da série agregada, a fim de verificar qual dos dois métodos resulta em um modelo com melhor acurácia. Essa comparação será feita a partir da metodologia desenvolvida por Diebold e Mariano (1995).
Resumo:
A presente dissertação tem como objetivo apresentar dois importantes modelos usados na análise de risco. Essa análise culmina em uma aplicação empírica para cada um deles. Apresenta-se primeiro o modelo Nelson-Siegel dinâmico, que estima a curva de juros usando um modelo paramétrico exponencial parcimonioso. É citada a referência criadora dessa abordagem, que é Nelson & Siegel (1987), passa-se pela apresentação da mais importante abordagem moderna que é a de Diebold & Li (2006), que é quem cria a abordagem dinâmica do modelo Nelson-Siegel, e que é inspiradora de diversas extensões. Muitas dessas extensões também são apresentadas aqui. Na parte empírica, usando dados da taxa a termo americana de Janeiro de 2004 a Março de 2015, estimam-se os modelos Nelson-Siegel dinâmico e de Svensson e comparam-se os resultados numa janela móvel de 12 meses e comparamos seus desempenhos com aqueles de um passeio aleatório. Em seguida, são apresentados os modelos ARCH e GARCH, citando as obras originais de Engle (1982) e Bolleslev (1986) respectivamente, discutem-se características destes modelos e apresentam-se algumas extensões ao modelo GARCH, incluindo aí alguns modelos GARCH multivariados. Passa-se então por uma rápida apresentação do conceito de VaR (Value at Risk), que será o objetivo da parte empírica. Nesta, usando dados de 02 de Janeiro de 2004 até 25 de Fevereiro de 2015, são feitas uma estimação da variância de um portfólio usando os modelos GARCH, GJR-GARCH e EGARCH e uma previsão do VaR do portfólio a partir da estimação feita anteriormente. Por fim, são apresentados alguns trabalhos que usam os dois modelos conjuntamente, ou seja, que consideram que as taxas ou os fatores que as podem explicam possuem variância variante no tempo.
Resumo:
Este trabalho procura identificar quais variáveis são as mais relevantes para previsão da taxa de câmbio real do Brasil e analisar a robustez dessas previsões. Para isso foram realizados testes de cointegração de Johansen em 13 variáveis macroeconômicas. O banco de dados utilizado são séries trimestrais e compreende o período de 1970 a 2014 e os testes foram realizados sobre as séries combinadas dois a dois, três a três e quatro a quatro. Por meio desse método, encontramos nove grupos que cointegram entre si. Utilizando esses grupos, são feitas previsões fora da amostra com a partir das últimas 60 observações. A qualidade das previsões foi avaliada por meio dos testes de Erro Quadrático Médio, teste de Diebold-Mariano e, além disso, foi utilizado um modelo de passeio aleatório do câmbio real como benchmark para o procedimento de Hansen. Todos os testes mostram que, à medida que se aumenta o horizonte de projeção, o passeio aleatório perde poder preditivo e a maioria dos modelos são mais informativos sobre o futuro da o câmbio real efetivo. O horizonte é de três a quatro anos à frente. No caso do teste de Hansen, o passeio aleatório é completamente eliminado do grupo final de modelos, mostrando que é possível fazer previsões superiores ao passeio aleatório.
Resumo:
Este trabalho procura identificar quais variáveis são as mais relevantes para previsão da taxa de câmbio real do Brasil e analisar a robustez dessas previsões. Para isso foram realizados testes de cointegração de Johansen em 13 variáveis macroeconômicas. O banco de dados utilizado são séries trimestrais e compreende o período de 1970 a 2014 e os testes foram realizados sobre as séries combinadas dois a dois, três a três e quatro a quatro. Por meio desse método, encontramos nove grupos que cointegram entre si. Utilizando esses grupos, são feitas previsões fora da amostra com a partir das últimas 60 observações. A qualidade das previsões foi avaliada por meio dos testes de Erro Quadrático Médio, teste de Diebold-Mariano e, além disso, foi utilizado um modelo de passeio aleatório do câmbio real como benchmark para o procedimento de Hansen. Todos os testes mostram que, à medida que se aumenta o horizonte de projeção, o passeio aleatório perde poder preditivo e a maioria dos modelos são mais informativos sobre o futuro da o câmbio real efetivo. O horizonte é de três a quatro anos à frente. No caso do teste de Hansen, o passeio aleatório é completamente eliminado do grupo final de modelos, mostrando que é possível fazer previsões superiores ao passeio aleatório.
Resumo:
Passados mais de dez anos do reconhecimento da autonomia administrativa, financeira e orçamentária às Defensorias Públicas Estaduais, o que se deu através da Emenda Constitucional n° 45/2004, ainda é possível encontrar instituições desta espécie que sofrem com interferências diárias nos mais variados aspectos de sua administração, em total desrespeito ao que determina a nossa Lei Fundamental. Entretanto, curiosamente este problema não tem se mostrado de maneira uniforme no cenário nacional, havendo estados onde as Defensorias Públicas gozam de mais autonomia e prestígio, enquanto existem outros onde estas sofrem para ter igual direito reconhecido. Neste sentido, partindo de um referencial teórico básico sobre autonomia da Defensoria Pública, a presente pesquisa teve por objetivo explorar os elementos que compõe tal conceito, buscando posteriormente verificar e descrever as assimetrias existentes entre os modelos de autonomia encontrados nas Defensorias Públicas estaduais ao redor do país. Para tanto, foram coletados dados através de observação direta, pesquisa documental e entrevistas, os quais foram posteriormente tratados e interpretados através da metodologia da análise de conteúdo. Os resultados obtidos através das consolidações efetuadas no âmbito das cincos categorias de análise propostas permitiram a conclusão de que a assimetria entre os modelos existentes é um fato, sendo perceptível principalmente nas áreas de Administração Financeira e Orçamentária, bem como na Formação da Alta Administração da Instituição. Também foram constatadas duas barreiras fundamentais para a implantação do modelo de autonomia preconizado pelo ordenamento, qual seja, a baixa autonomia na previsão de despesas no processo orçamentário e a ausência de limite próprio de pessoal para a Defensoria Pública na Lei de Responsabilidade Fiscal.
Resumo:
O presente trabalho tem como objetivo avaliar a capacidade preditiva de modelos econométricos de séries de tempo baseados em indicadores macroeconômicos na previsão da inflação brasileira (IPCA). Os modelos serão ajustados utilizando dados dentro da amostra e suas projeções ex-post serão acumuladas de um a doze meses à frente. As previsões serão comparadas a de modelos univariados como autoregressivo de primeira ordem - AR(1) - que nesse estudo será o benchmark escolhido. O período da amostra vai de janeiro de 2000 até agosto de 2015 para ajuste dos modelos e posterior avaliação. Ao todo foram avaliadas 1170 diferentes variáveis econômicas a cada período a ser projetado, procurando o melhor conjunto preditores para cada ponto no tempo. Utilizou-se o algoritmo Autometrics para a seleção de modelos. A comparação dos modelos foi feita através do Model Confidence Set desenvolvido por Hansen, Lunde e Nason (2010). Os resultados obtidos nesse ensaio apontam evidências de ganhos de desempenho dos modelos multivariados para períodos posteriores a 1 passo à frente.
Resumo:
Este artigo apresenta modelos de parcerias que podem ser celebrados pela prefeitura de São Paulo com a finalidade de estruturar um cluster de moda na região da luz, centro do município. A escolha do setor têxtil para a proposta se baseou na importância que esta indústria tem na cidade de São Paulo e no seu potencial de crescimento, tendo em vista a baixa qualificação e inovação apontada pelos dados do setor. A delimitação da região da luz considerou a vocação da região já ocupada pelo comércio de moda e por ser uma região estratégica para o município. Com esse artigo objetiva-se projetar a cidade de São Paulo como grande produtor de moda no mundo e recuperar a região da luz por meio de parcerias com parceiros privados, ou seja, com ações com baixo impacto no orçamento municipal.
Resumo:
O estudo busca identificar quais variáveis são as mais relevantes para previsão da taxa de câmbio real efetiva e analisar a robustez dessas previsões. Foram realizados testes de cointegração de Johansen em 13 variáveis macroeconômicas. O banco de dados utilizado são séries trimestrais e os testes foram realizados sobre as séries combinadas dois a dois, três a três e quatro a quatro. Utilizando esse método, encontramos modelos que cointegravam entre si, para os países analisados. A partir desses modelos, foram feitas previsões fora da amostra a partir das últimas 60 observações. A qualidade das previsões foi avaliada por meio dos testes de Erro Quadrático Médio (EQM) e Modelo do Conjunto de Confiança de Hansen (MCS) utilizando um modelo de passeio aleatório do câmbio real como benchmark. Todos os testes mostram que, à medida que se aumenta o horizonte de projeção, o passeio aleatório perde poder preditivo e a maioria dos modelos são mais informativos sobre o futuro da taxa de câmbio real efetivo.