35 resultados para Nash-Gunther
Resumo:
Nós introduzimos uma condição, resultados uniformemente seguros, para jogos compactos e resultados (“payoffs”) limitados e mensur´aveis nas estrat´egias. Demonstramos que se um jogo compacto tem resultados uniformemente seguros, ent˜ao sua extens˜ao mista tem resultados seguros.
Resumo:
We define Nash equilibrium for two-person normal form games in the presence of uncertainty, in the sense of Knight(1921). We use the fonna1iution of uncertainty due to Schmeidler and Gilboa. We show tbat there exist Nash equilibria for any degree of uncertainty, as measured by the uncertainty aversion (Dow anel Wer1ang(l992a». We show by example tbat prudent behaviour (maxmin) can be obtained as an outcome even when it is not rationaliuble in the usual sense. Next, we break down backward industion in the twice repeated prisoner's dilemma. We link these results with those on cooperation in the finitely repeated prisoner's dilemma obtained by Kreps-Milgrom-Roberts-Wdson(1982), and withthe 1iterature on epistemological conditions underlying Nash equilibrium. The knowledge notion implicit in this mode1 of equilibrium does not display logical omniscience.
Resumo:
We present two alternative definitions of Nash equilibrium for two person games in the presence af uncertainty, in the sense of Knight. We use the formalization of uncertainty due to Schmeidler and Gilboa. We show that, with one of the definitions, prudent behaviour (maxmin) can be obtained as an outcome even when it is not rationalizable in the usual sense. Most striking is that with the Same definition we break down backward induction in the twice repeated prisoner's dilemma. We also link these results with the Kreps-Milgrom-Roberts-Wilson explanation of cooperation in the finitely repeated prisoner's dilemma.
Resumo:
Kalai and Lebrer (93a, b) have recently show that for the case of infinitely repeated games, a coordination assumption on beliefs and optimal strategies ensures convergence to Nash equilibrium. In this paper, we show that for the case of repeated games with long (but finite) horizon, their condition does not imply approximate Nash equilibrium play. Recently Kalai and Lehrer (93a, b) proved that a coordination assumption on beliefs and optimal strategies, ensures that pIayers of an infinitely repeated game eventually pIay 'E-close" to an E-Nash equilibrium. Their coordination assumption requires that if players believes that certain set of outcomes have positive probability then it must be the case that this set of outcomes have, in fact, positive probability. This coordination assumption is called absolute continuity. For the case of finitely repeated games, the absolute continuity assumption is a quite innocuous assumption that just ensures that pIayers' can revise their priors by Bayes' Law. However, for the case of infinitely repeated games, the absolute continuity assumption is a stronger requirement because it also refers to events that can never be observed in finite time.
Resumo:
We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game.
Resumo:
We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game .
Resumo:
We show that for a large class of competitive nonlinear pricing games with adverse selection, the property of better-reply security is naturally satisfied - thus, resolving via a result due to Reny (1999) the issue of existence of Nash equilibrium for a large class of competitive nonlinear pricing games.
Resumo:
Este artigo aplica rn.n teori,ma de existência de equilibrios de Nash sob incerteza (Dow & Werlang, 1~4) a um problema clássico da Teoria da Competição Oligopolística. Particularmente, mostra como se pode mapear todos os equilibrios de Cournot (que incluem as soluções de monopólio e de bloqueio total da produção) unicamente em função da aversão à incerteza dos produtores. Os efeitos das variações destes parâmetros sobre as produções de equilibrio são estudados. Também, as soluções de Cournot sob incerteza são comparadas com a solução do monopolio standard. Particularmente, mostra-se: que existe um nível de incerteza tal que toda aversão à incerteza (do mercado) superior à este nível, induz os agentes a produzir, agregadamente, quantidades menores que as de monopolio. Enfim, as soluções de equilibrio são particularizadas explícitamente nos casos da Demanda Linear e do Duopolio de Cournot
Resumo:
This paper studies the production and trade patterns that may arise between two different countries if plant location is introduced as a first step in the producers' decision making. A three-stage game is used: the first deals with location and the next two with capacity and final sales decisions. Demand and cost structures differ by country, and the latter contain specific elements related to the foreign operation. The structure of possible Nash-equilibria is examined and an analysis of the changes in the solution, if the countries engage in an integration process, is made. As in previous models, though global welfare gains may not be very high, single country ones may be considerable, due to changes in the location of the plants. However, even if full integration takes place, global Marshallian welfare may decrease. Conditions which determine a tendency towards multinationalisation are obtained. Assuming a move toward integration, conditions are also provided to characterize when exporting will be preferred to local production. The fact that producers may retain a certain discriminating power, notwithstanding the elimination of barriers to arbitrage, creates a tendency to locate production in the country where prices are higher. This explains why welfare gains may not be obvious. An empirical illustration, with real data from two MERCOSUL countries (Brazil and Argentina) illustrates the possible outcomes.
Resumo:
This artic/e applies a theorem of Nash equilibrium under uncertainty (Dow & Werlang, 1994) to the classic Coumot model of oligopolistic competition. It shows, in particular, how one can map all Coumot equilibrium (which includes the monopoly and the null solutions) with only a function of uncertainty aversion coefficients of producers. The effect of variations in these parameters over the equilibrium quantities are studied, also assuming exogenous increases in the number of matching firms in the game. The Cournot solutions under uncertainty are compared with the monopolistic one. It shows principally that there is an uncertainty aversion level in the industry such that every aversion coefficient beyond it induces firms to produce an aggregate output smaller than the monopoly output. At the end of the artic/e equilibrium solutions are specialized for Linear Demand and for Coumot duopoly. Equilibrium analysis in the symmetric case allows to identify the uncertainty aversion coefficient for the whole industry as a proportional lack of information cost which would be conveyed by market price in the perfect competition case (Lerner Index).
Resumo:
We transform a non co-operati ve game into a -Bayesian decision problem for each player where the uncertainty faced by a player is the strategy choices of the other players, the pr iors of other players on the choice of other players, the priors over priors and so on.We provide a complete characterization between the extent of knowledge about the rationality of players and their ability to successfulIy eliminate strategies which are not best responses. This paper therefore provides the informational foundations of iteratively unàominated strategies and rationalizable strategic behavior (Bernheim (1984) and Pearce (1984». Moreover, sufficient condi tions are also found for Nash equilibrium behavior. We also provide Aumann's (1985) results on correlated equilibria .
Resumo:
Este trabalho procurará de início explicitar detalhadamente o comportamento do investidor avesso a incerteza quando atua isoladamente na economia. Dirigir-se-á, em seguida, no sentido de determinar o comportamento do preço de equilíbrio em uma economia onde os agentes econômicos possuem diferentes graus de aversão a incerteza, e como a variação desta globalmente ou individualmente altera aquele. Finalmente introduzir-se-á incerteza no modelo de Kyle (1985), estendendo o trabalho de Oliveira (1989), concernentemente aos agentes econômicos agindo racionalmente, à presente análise, onde será mostrado existir também, apenas um equilíbrio de Nash, que é o equilíbrio obtido sem negociação.
Resumo:
Nesse trabalho, estudamos o papel que a percepção de impunidade tem sobre os agentes que escolhem invadir áreas públicas na Amazônia para explorar de forma predatória os recursos florestais e ocupar a terra. Para isso, foi desenvolvido um modelo microeconômico de escolha sob incerteza, em que os fazendeiros comparam os payoffs provenientes da invasão ou de seguir a lei. O payoff da invasão foi calculado do ganho/perda resultante de ser pego ou não no ato ilegal, pesando as probabilidades de cada um desses eventos ocorrer (que é função dos gastos do governo com fiscalização na região). Em seguida, foi calculado a quantidade ótima de gastos do governo em fiscalização, levando em conta um governo interessado em maximizar a produção agropecuária regional, já que, por um lado, o desmatamento resulta em maior disponibilidade de terra para o setor agropecuário, porém, por outro, diminui a produtividade dado seu impacto sobre a qualidade ambiental. Depois, fazemos uma analise sobre desenho de mecanismo e desmatamento, desenvolvendo o melhor mecanismo direto de um Equilíbrio de Nash no jogo de informação perfeita, para em seguida descrever as opções de mecanismos possíveis para o governo brasileiro lidar com o desmatamento na Amazônia.