21 resultados para quantum-enhanced metrology
em Universitat de Girona, Spain
Resumo:
Es discuteixen breument algunes consideracions sobre l'aplicació de la Teoria dels Conjunts difusos a la Química quàntica. Es demostra aqui que molts conceptes químics associats a la teoria són adequats per ésser connectats amb l'estructura dels Conjunts difusos. També s'explica com algunes descripcions teoriques dels observables quàntics es potencien tractant-les amb les eines associades als esmentats Conjunts difusos. La funció densitat es pren com a exemple de l'ús de distribucions de possibilitat al mateix temps que les distribucions de probabilitat quàntiques
Resumo:
In this article, a new technique for grooming low-speed traffic demands into high-speed optical routes is proposed. This enhancement allows a transparent wavelength-routing switch (WRS) to aggregate traffic en route over existing optical routes without incurring expensive optical-electrical-optical (OEO) conversions. This implies that: a) an optical route may be considered as having more than one ingress node (all inline) and, b) traffic demands can partially use optical routes to reach their destination. The proposed optical routes are named "lighttours" since the traffic originating from different sources can be forwarded together in a single optical route, i.e., as taking a "tour" over different sources towards the same destination. The possibility of creating lighttours is the consequence of a novel WRS architecture proposed in this article, named "enhanced grooming" (G+). The ability to groom more traffic in the middle of a lighttour is achieved with the support of a simple optical device named lambda-monitor (previously introduced in the RingO project). In this article, we present the new WRS architecture and its advantages. To compare the advantages of lighttours with respect to classical lightpaths, an integer linear programming (ILP) model is proposed for the well-known multilayer problem: traffic grooming, routing and wavelength assignment The ILP model may be used for several objectives. However, this article focuses on two objectives: maximizing the network throughput, and minimizing the number of optical-electro-optical conversions used. Experiments show that G+ can route all the traffic using only half of the total OEO conversions needed by classical grooming. An heuristic is also proposed, aiming at achieving near optimal results in polynomial time
Resumo:
This paper focuses on QoS routing with protection in an MPLS network over an optical layer. In this multi-layer scenario each layer deploys its own fault management methods. A partially protected optical layer is proposed and the rest of the network is protected at the MPLS layer. New protection schemes that avoid protection duplications are proposed. Moreover, this paper also introduces a new traffic classification based on the level of reliability. The failure impact is evaluated in terms of recovery time depending on the traffic class. The proposed schemes also include a novel variation of minimum interference routing and shared segment backup computation. A complete set of experiments proves that the proposed schemes are more efficient as compared to the previous ones, in terms of resources used to protect the network, failure impact and the request rejection ratio
Resumo:
In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation
Resumo:
Previous results concerning radiative emission under laser irradiation of silicon nanopowder are reinterpreted in terms of thermal emission. A model is developed that considers the particles in the powder as independent, so under vacuum the only dissipation mechanism is thermal radiation. The supralinear dependence observed between the intensity of the emitted radiation and laser power is predicted by the model, as is the exponential quenching when the gas pressure around the sample increases. The analysis allows us to determine the sample temperature. The local heating of the sample has been assessed independently by the position of the transverse optical Raman mode. Finally, it is suggested that the photoluminescence observed in porous silicon and similar materials could, in some cases, be blackbody radiation
Resumo:
The quenching of the photoluminescence of Si nanopowder grown by plasma-enhanced chemical vapor deposition due to pressure was measured for various gases ( H2, O2, N2, He, Ne, Ar, and Kr) and at different temperatures. The characteristic pressure, P0, of the general dependence I(P)=I0exp(-P/P0) is gas and temperature dependent. However, when the number of gas collisions is taken as the variable instead of pressure, then the quenching is the same within a gas family (mono- or diatomic) and it is temperature independent. So it is concluded that the effect depends on the number of gas collisions irrespective of the nature of the gas or its temperature
Resumo:
The following contribution pretends to cope with the demands of a globalised, post-modern environment through the design and implementation of an online international project where an SNS is used in order to join English as Second Language (ESL) students from different parts of the world. The design of the project appears around the implementation of the Bologna process in the Faculty of Education from the University of Girona where the basic prerequisite of all students to acquire English at the level B1 of the Common European Portfolio makes English a compulsory competence for communication among its higher education candidates in order to develop in the world. Together with the University of Girona, there is the International Educational and Resources Network (iEARN) which promotes the participation of schools around the world in online international projects
Resumo:
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments
Resumo:
Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed
Resumo:
A procedure based on quantum molecular similarity measures (QMSM) has been used to compare electron densities obtained from conventional ab initio and density functional methodologies at their respective optimized geometries. This method has been applied to a series of small molecules which have experimentally known properties and molecular bonds of diverse degrees of ionicity and covalency. Results show that in most cases the electron densities obtained from density functional methodologies are of a similar quality than post-Hartree-Fock generalized densities. For molecules where Hartree-Fock methodology yields erroneous results, the density functional methodology is shown to yield usually more accurate densities than those provided by the second order Møller-Plesset perturbation theory
Resumo:
The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares 〈 V2 〉 and the energies of basepair triplets X G+ Y and X A+ Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B -DNA structure and show that in several important cases the couplings calculated for the idealized B -DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ∼0.07 eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The X G+ Y are by 0.5 eV more stable than X A+ Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA
Resumo:
A través del análisis de información pública del proyecto se han elaborado una serie de indicadores que permiten comparar el grado de adopción, actividad y participación en proyectos de software libre. Estos indicadores han sido desarrollados en base a información obtenida desde herramientas habituales en los proyectos (listas de correo, repositorios de código, etc) y que nos permiten reconstruir los patrones de comportamiento en los mismos
Resumo:
Es mostra que, gracies a una extensió en la definició dels Índexs Moleculars Topològics, s'arriba a la formulació d'índexs relacionats amb la teoria de la Semblança Molecular Quàntica. Es posa de manifest la connexió entre les dues metodologies: es revela que un marc de treball teòric sòlidament fonamentat sobre la teoria de la Mecànica Quàntica es pot connectar amb una de les tècniques més antigues relacionades amb els estudis de QSPR. Es mostren els resultats per a dos casos d'exemple d'aplicació d'ambdues metodologies
Resumo:
Es descriu l'aproximació de Capes Atòmiques dins de la teoria de la Semblança Molecular Quàntica. Partint només de dades teòriques, s'ha trobat una relació entre estructura molecular i activitat biològica per a diversos conjunts de molècules. Es descriuen els aspectes teòrics de la Semblança Molecular Quàntica i alguns exemples d'aplicació
Resumo:
In the last decades, the awareness of environmental issues has increased in society considerably. There is an increasing need to improve the effluent quality of domestic wastewater treatment processes. This thesis describes the application of the Sequencing Batch Reactor (SBR) technology for Biological Nutrient Removal (BNR) from the wastewater. In particular, the work presented evolves from the nitrogen removal to the biological nutrient removal (i.e. nitrogen plus phosphorous removal) with special attention to the operational strategy design, the identification of possible reactor cycle controls or the influent composition related to the process efficiency. In such sense, also the use of ethanol as an external carbon (when low influent Carbon:Phosphorus (C:P) or Carbon:Nitrogen (C:N) ratios are presented) are studied as an alternative to maintain the BNR efficiency.