Enhanced Model Selection for motion segmentation


Autoria(s): Zappella, Luca; Lladó Bardera, Xavier; Salvi, Joaquim
Data(s)

2009

Resumo

In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation

Formato

application/pdf

Identificador

Zappella, L., Llado, X., i Salvi, J. (2009). Enhanced Model Selection for motion segmentation. 16th IEEE International Conference on Image Processing (ICIP) : 2009, 4053-4056. Recuperat 10 maig 2010, a http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5413729

978-1-4244-5655-0

1522-4880

http://hdl.handle.net/10256/2246

http://dx.doi.org/10.1109/ICIP.2009.5413729

Idioma(s)

eng

Publicador

IEEE

Relação

Reproducció digital del document publicat a: http://dx.doi.org/10.1109/ICIP.2009.5413729

© 16th IEEE International Conference on Image Processing (ICIP), 2009, p. 4053-4056

Articles publicats (D-ATC)

Direitos

Tots els drets reservats

Palavras-Chave #Imatges -- Processament #Imatges -- Transmissió #Visió per ordinador #Computer vision #Image processing #Image transmission
Tipo

info:eu-repo/semantics/article