4 resultados para Metal-organic chemical vapor deposition (MOCVD)

em Universitat de Girona, Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous results concerning radiative emission under laser irradiation of silicon nanopowder are reinterpreted in terms of thermal emission. A model is developed that considers the particles in the powder as independent, so under vacuum the only dissipation mechanism is thermal radiation. The supralinear dependence observed between the intensity of the emitted radiation and laser power is predicted by the model, as is the exponential quenching when the gas pressure around the sample increases. The analysis allows us to determine the sample temperature. The local heating of the sample has been assessed independently by the position of the transverse optical Raman mode. Finally, it is suggested that the photoluminescence observed in porous silicon and similar materials could, in some cases, be blackbody radiation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quenching of the photoluminescence of Si nanopowder grown by plasma-enhanced chemical vapor deposition due to pressure was measured for various gases ( H2, O2, N2, He, Ne, Ar, and Kr) and at different temperatures. The characteristic pressure, P0, of the general dependence I(P)=I0exp(-P/P0) is gas and temperature dependent. However, when the number of gas collisions is taken as the variable instead of pressure, then the quenching is the same within a gas family (mono- or diatomic) and it is temperature independent. So it is concluded that the effect depends on the number of gas collisions irrespective of the nature of the gas or its temperature

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation of amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition were investigated. Their hydrogen content has a great influence on the oxidation rate at low temperature. When the mass gain is recorded during a heating ramp in dry air, an oxidation process at low temperature is identified with an onset around 250°C. This temperature onset is similar to that of hydrogen desorption. It is shown that the oxygen uptake during this process almost equals the number of hydrogen atoms present in the nanoparticles. To explain this correlation, we propose that oxidation at low temperature is triggered by the process of hydrogen desorption

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interactions between electrons determine the structure and properties of matter from molecules to solids. Therefore, the understanding of the electronic structure of molecules will enable us to extract relevant chemical information. In the first part of this thesis, we focus our attention on the analysis of chemical bonding by means of the Electron Localization Function (ELF) and the Domain-Averaged Fermi Hole analysis (DAFH). In the second part, we assess the performance of some indicators of aromaticity by analyzing their advantages and drawbacks. We propose a series of tests based on well-known aromaticity trends that can be applied to evaluate the aromaticity of current and future indicators of aromaticity in both organic and inorganic species. Moreover, we investigate the nature of electron delocalization in both aromatic and antiaromatic systems in the light of Hückel’s (4n + 2) rule. Finally, we analyze the phenomenon of multiple aromaticity in all-metal clusters.