11 resultados para Discrete Geometry
em Universitat de Girona, Spain
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table has n rows and m columns and all probabilities are non-null. This kind of table can be seen as an element in the simplex of n · m parts. In this context, the marginals are identified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclidean elements of the Aitchison geometry of the simplex can also be translated into the table of probabilities: subspaces, orthogonal projections, distances. Two important questions are addressed: a) given a table of probabilities, which is the nearest independent table to the initial one? b) which is the largest orthogonal projection of a row onto a column? or, equivalently, which is the information in a row explained by a column, thus explaining the interaction? To answer these questions three orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independent two-way tables and fully dependent tables representing row-column interaction. An important result is that the nearest independent table is the product of the two (row and column)-wise geometric marginal tables. A corollary is that, in an independent table, the geometric marginals conform with the traditional (arithmetic) marginals. These decompositions can be compared with standard log-linear models. Key words: balance, compositional data, simplex, Aitchison geometry, composition, orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure, contingency table
Resumo:
La tesis pretende explorar acercamientos computacionalmente confiables y eficientes de contractivo MPC para sistemas de tiempo discreto. Dos tipos de contractivo MPC han sido estudiados: MPC con coacción contractiva obligatoria y MPC con una secuencia contractiva de conjuntos controlables. Las técnicas basadas en optimización convexa y análisis de intervalos son aplicadas para tratar MPC contractivo lineal y no lineal, respectivamente. El análisis de intervalos clásicos es ampliado a zonotopes en la geometría para diseñar un conjunto invariante de control terminal para el modo dual de MPC. También es ampliado a intervalos modales para tener en cuenta la modalidad al calcula de conjuntos controlables robustos con una interpretación semántica clara. Los instrumentos de optimización convexa y análisis de intervalos han sido combinados para mejorar la eficacia de contractive MPC para varias clases de sistemas de tiempo discreto inciertos no lineales limitados. Finalmente, los dos tipos dirigidos de contractivo MPC han sido aplicados para controlar un Torneo de Fútbol de Copa Mundial de Micro Robot (MiroSot) y un Tanque-Reactor de Mezcla Continua (CSTR), respectivamente.
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities by generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
This paper examines a dataset which is modeled well by the Poisson-Log Normal process and by this process mixed with Log Normal data, which are both turned into compositions. This generates compositional data that has zeros without any need for conditional models or assuming that there is missing or censored data that needs adjustment. It also enables us to model dependence on covariates and within the composition
Resumo:
A novel metric comparison of the appendicular skeleton (fore and hind limb) of different vertebrates using the Compositional Data Analysis (CDA) methodological approach it’s presented. 355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda, Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) were analyzed with CDA. A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinson distance has been used as a measure of disparity in limb elements proportions to infer some aspects of functional morphology
Resumo:
The estimation of camera egomotion is a well established problem in computer vision. Many approaches have been proposed based on both the discrete and the differential epipolar constraint. The discrete case is mainly used in self-calibrated stereoscopic systems, whereas the differential case deals with a unique moving camera. The article surveys several methods for mobile robot egomotion estimation covering more than 0.5 million samples using synthetic data. Results from real data are also given
Resumo:
Describes a method to code a decimated model of an isosurface on an octree representation while maintaining volume data if it is needed. The proposed technique is based on grouping the marching cubes (MC) patterns into five configurations according the topology and the number of planes of the surface that are contained in a cell. Moreover, the discrete number of planes on which the surface lays is fixed. Starting from a complete volume octree, with the isosurface codified at terminal nodes according to the new configuration, a bottom-up strategy is taken for merging cells. Such a strategy allows one to implicitly represent co-planar faces in the upper octree levels without introducing any error. At the end of this merging process, when it is required, a reconstruction strategy is applied to generate the surface contained in the octree intersected leaves. Some examples with medical data demonstrate that a reduction of up to 50% in the number of polygons can be achieved
Resumo:
We present algorithms for computing approximate distance functions and shortest paths from a generalized source (point, segment, polygonal chain or polygonal region) on a weighted non-convex polyhedral surface in which obstacles (represented by polygonal chains or polygons) are allowed. We also describe an algorithm for discretizing, by using graphics hardware capabilities, distance functions. Finally, we present algorithms for computing discrete k-order Voronoi diagrams
Resumo:
We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex polyhedral surface in which polygonal chain or polygon obstacles are allowed. We also present algorithms for computing discrete Voronoi diagrams of a set of generalized sites (points, segments, polygonal chains or polygons) on a polyhedral surface with obstacles. To obtain the discrete Voronoi diagrams our algorithms, exploiting hardware graphics capabilities, compute shortest path distances defined by the sites
Resumo:
En aquesta tesi es solucionen problemes de visibilitat i proximitat sobre superfícies triangulades considerant elements generalitzats. Com a elements generalitzats considerem: punts, segments, poligonals i polígons. Les estrategies que proposem utilitzen algoritmes de geometria computacional i hardware gràfic. Comencem tractant els problemes de visibilitat sobre models de terrenys triangulats considerant un conjunt d'elements de visió generalitzats. Es presenten dos mètodes per obtenir, de forma aproximada, mapes de multi-visibilitat. Un mapa de multi-visibilitat és la subdivisió del domini del terreny que codifica la visibilitat d'acord amb diferents criteris. El primer mètode, de difícil implementació, utilitza informació de visibilitat exacte per reconstruir de forma aproximada el mapa de multi-visibilitat. El segon, que va acompanyat de resultats d'implementació, obté informació de visibilitat aproximada per calcular i visualitzar mapes de multi-visibilitat discrets mitjançant hardware gràfic. Com a aplicacions es resolen problemes de multi-visibilitat entre regions i es responen preguntes sobre la multi-visibilitat d'un punt o d'una regió. A continuació tractem els problemes de proximitat sobre superfícies polièdriques triangulades considerant seus generalitzades. Es presenten dos mètodes, amb resultats d'implementació, per calcular distàncies des de seus generalitzades sobre superfícies polièdriques on hi poden haver obstacles generalitzats. El primer mètode calcula, de forma exacte, les distàncies definides pels camins més curts des de les seus als punts del poliedre. El segon mètode calcula, de forma aproximada, distàncies considerant els camins més curts sobre superfícies polièdriques amb pesos. Com a aplicacions, es calculen diagrames de Voronoi d'ordre k, i es resolen, de forma aproximada, alguns problemes de localització de serveis. També es proporciona un estudi teòric sobre la complexitat dels diagrames de Voronoi d'ordre k d'un conjunt de seus generalitzades en un poliedre sense pesos.