16 resultados para autonomous regions
Resumo:
The low levels of unemployment recorded in the UK in recent years are widely cited as evidence of the country’s improved economic performance, and the apparent convergence of unemployment rates across the country’s regions used to suggest that the longstanding divide in living standards between the relatively prosperous ‘south’ and the more depressed ‘north’ has been substantially narrowed. Dissenters from these conclusions have drawn attention to the greatly increased extent of non-employment (around a quarter of the UK’s working age population are not in employment) and the marked regional dimension in its distribution across the country. Amongst these dissenters it is generally agreed that non-employment is concentrated amongst older males previously employed in the now very much smaller ‘heavy’ industries (e.g. coal, steel, shipbuilding). This paper uses the tools of compositiona l data analysis to provide a much richer picture of non-employment and one which challenges the conventional analysis wisdom about UK labour market performance as well as the dissenters view of the nature of the problem. It is shown that, associated with the striking ‘north/south’ divide in nonemployment rates, there is a statistically significant relationship between the size of the non-employment rate and the composition of non-employment. Specifically, it is shown that the share of unemployment in non-employment is negatively correlated with the overall non-employment rate: in regions where the non-employment rate is high the share of unemployment is relatively low. So the unemployment rate is not a very reliable indicator of regional disparities in labour market performance. Even more importantly from a policy viewpoint, a significant positive relationship is found between the size of the non-employment rate and the share of those not employed through reason of sickness or disability and it seems (contrary to the dissenters) that this connection is just as strong for women as it is for men
Resumo:
In 2000 the European Statistical Office published the guidelines for developing the Harmonized European Time Use Surveys system. Under such a unified framework, the first Time Use Survey of national scope was conducted in Spain during 2002– 03. The aim of these surveys is to understand human behavior and the lifestyle of people. Time allocation data are of compositional nature in origin, that is, they are subject to non-negativity and constant-sum constraints. Thus, standard multivariate techniques cannot be directly applied to analyze them. The goal of this work is to identify homogeneous Spanish Autonomous Communities with regard to the typical activity pattern of their respective populations. To this end, fuzzy clustering approach is followed. Rather than the hard partitioning of classical clustering, where objects are allocated to only a single group, fuzzy method identify overlapping groups of objects by allowing them to belong to more than one group. Concretely, the probabilistic fuzzy c-means algorithm is conveniently adapted to deal with the Spanish Time Use Survey microdata. As a result, a map distinguishing Autonomous Communities with similar activity pattern is drawn. Key words: Time use data, Fuzzy clustering; FCM; simplex space; Aitchison distance
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
In this paper a colour texture segmentation method, which unifies region and boundary information, is proposed. The algorithm uses a coarse detection of the perceptual (colour and texture) edges of the image to adequately place and initialise a set of active regions. Colour texture of regions is modelled by the conjunction of non-parametric techniques of kernel density estimation (which allow to estimate the colour behaviour) and classical co-occurrence matrix based texture features. Therefore, region information is defined and accurate boundary information can be extracted to guide the segmentation process. Regions concurrently compete for the image pixels in order to segment the whole image taking both information sources into account. Furthermore, experimental results are shown which prove the performance of the proposed method
Resumo:
An unsupervised approach to image segmentation which fuses region and boundary information is presented. The proposed approach takes advantage of the combined use of 3 different strategies: the guidance of seed placement, the control of decision criterion, and the boundary refinement. The new algorithm uses the boundary information to initialize a set of active regions which compete for the pixels in order to segment the whole image. The method is implemented on a multiresolution representation which ensures noise robustness as well as computation efficiency. The accuracy of the segmentation results has been proven through an objective comparative evaluation of the method
Resumo:
This paper presents the design and implementation of a mission control system (MCS) for an autonomous underwater vehicle (AUV) based on Petri nets. In the proposed approach the Petri nets are used to specify as well as to execute the desired autonomous vehicle mission. The mission is easily described using an imperative programming language called mission control language (MCL) that formally describes the mission execution thread. A mission control language compiler (MCL-C) able to automatically translate the MCL into a Petri net is described and a real-time Petri net player that allows to execute the resulting Petri net onboard an AUV are also presented
Resumo:
The absolute necessity of obtaining 3D information of structured and unknown environments in autonomous navigation reduce considerably the set of sensors that can be used. The necessity to know, at each time, the position of the mobile robot with respect to the scene is indispensable. Furthermore, this information must be obtained in the least computing time. Stereo vision is an attractive and widely used method, but, it is rather limited to make fast 3D surface maps, due to the correspondence problem. The spatial and temporal correspondence among images can be alleviated using a method based on structured light. This relationship can be directly found codifying the projected light; then each imaged region of the projected pattern carries the needed information to solve the correspondence problem. We present the most significant techniques, used in recent years, concerning the coded structured light method
Resumo:
The following contribution pretends to cope with the demands of a globalised, post-modern environment through the design and implementation of an online international project where an SNS is used in order to join English as Second Language (ESL) students from different parts of the world. The design of the project appears around the implementation of the Bologna process in the Faculty of Education from the University of Girona where the basic prerequisite of all students to acquire English at the level B1 of the Common European Portfolio makes English a compulsory competence for communication among its higher education candidates in order to develop in the world. Together with the University of Girona, there is the International Educational and Resources Network (iEARN) which promotes the participation of schools around the world in online international projects
Resumo:
School has evolved from a place where knowledge is provided to a place where learners are helped to develop their professional and social skills. Consequently, education must evolve through big challenges in order to face the changes of society in the XXIst century
Resumo:
The presented work focuses on the theoretical and practical aspects concerning the design and development of a formal method to build a mission control system for autonomous underwater vehicles bringing systematic design principles for the formal description of missions using Petri nets. The proposed methodology compounds Petri net building blocks within it to de_ne a mission plan for which it is proved that formal properties, such as reachability and reusability, hold as long as these same properties are also guaranteed by each Petri net building block. To simplify the de_nition of these Petri net blocks as well as their composition, a high level language called Mission Control Language has been developed. Moreover, a methodology to ensure coordination constraints for teams of multiple robots as well as the de_nition of an interface between the proposed system and an on-board planner able to plan/replan sequences of prede_ned mission plans is included as well. Results of experiments with several real underwater vehicles and simulations involving an autonomous surface craft and an autonomous underwater vehicles are presented to show the system's capabilities.
Resumo:
Aquest treball proposa una nova arquitectura de control amb coordinació distribuïda per a un robot mòbil (ARMADiCo). La metodologia de coordinació distribuïda consisteix en dos passos: el primer determina quin és l'agent que guanya el recurs basat en el càlcul privat de la utilitat i el segon, com es fa el canvi del recurs per evitar comportaments abruptes del robot. Aquesta arquitectura ha estat concebuda per facilitar la introducció de nous components hardware i software, definint un patró de disseny d'agents que captura les característiques comunes dels agents. Aquest patró ha portat al desenvolupament d'una arquitectura modular dins l'agent que permet la separació dels diferents mètodes utilitzats per aconseguir els objectius, la col·laboració, la competició i la coordinació de recursos. ARMADiCo s'ha provat en un robot Pioneer 2DX de MobileRobots Inc.. S'han fet diversos experiments i els resultats han demostrat que s'han aconseguit les característiques proposades per l'arquitectura.
Resumo:
Simultaneous Localization and Mapping (SLAM) do not result in consistent maps of large areas because of gradual increase of the uncertainty for long term missions. In addition, as the size of the map grows the computational cost increases, making SLAM solutions unsuitable for on-line applications. This thesis surveys SLAM approaches paying special attention to those approaches aimed to work on large scenarios. Special focus is given to existing underwater SLAM applications. A technique based on using independent local maps together with a global stochastic map is presented. This technique is called Selective Submap Joining SLAM (SSJS). A global map contains relative transformations between local maps, which are updated once a new loop is detected. Maps sharing several features are fused, maintaining the correlation between landmarks and vehicle's pose. The use of local maps reduces computational costs and improves map consistency as compared to state of the art techniques.