8 resultados para multiscale fractal dimension
em Ministerio de Cultura, Spain
Resumo:
Análisis en torno al concepto de fractal. Se exponen diferentes formas de generar fractales y algunas de sus aplicaciones.
Resumo:
Resumen basado en el de la publicación
Resumo:
La geometría fractal permite estudiar de manera científica formas naturales como la de un arbol, romanesco o un copo de nieve en las que apreciamos irregularidades, estructura en todas las escalas y autosemenjanza. Algunos de los fractales más conocidos son la llamada curva de Koch o el triángulo de Sierpinski. Ambos se forman de una manera similar, se aplica una regla sencilla que se usa una y otra vez. Otra fuente de fractales es la iteración de funciones de variable compleja. El conjunto de Maldelbrot se crea a partir de este sistema. Para que cierta imagen sea un fractal no es suficiente con la autosemejanza, además hace falta una dimensión fractal, que se calcula con una serie de cuadrículas cada vez más finas que se superponen a la figura y se cuentan el número de cuadrados que tienen en común con la figura. A partir de los experimentos de Maldelbrot algunos artistas crearon el llamado arte fractal, obras de arte creadas mediante algoritmos matemáticos de generación de fractales y su posible manipulación posterior. También se usan para la composición musical que se crea a partir de una sucesión de números creados a partir de un algoritmo fractal. Esta música también se caracteriza por una estructura autosemejante.
Resumo:
Monográfico con el título: 'La Alfabetización Tecnológica y el desarrollo regional'. Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'El Espacio Europeo de Educación Superior ¿Hacia dónde va la Universidad Europea?'. Resumen basado en el de la publicación
Resumo:
Resumen tomado de la publicaci??n.
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen basado en el de la publicaci??n