4 resultados para Reversible Jump MCMC
em Cochin University of Science
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, quantum computing and nanotechnology. Low power circuits implemented using reversible logic that provides single error correction – double error detection (SEC-DED) is proposed in this paper. The design is done using a new 4 x 4 reversible gate called ‘HCG’ for implementing hamming error coding and detection circuits. A parity preserving HCG (PPHCG) that preserves the input parity at the output bits is used for achieving fault tolerance for the hamming error coding and detection circuits.
Resumo:
Reversibility plays a fundamental role when logic gates such as AND, OR, and XOR are not reversible. computations with minimal energy dissipation are considered. Hence, these gates dissipate heat and may reduce the life of In recent years, reversible logic has emerged as one of the most the circuit. So, reversible logic is in demand in power aware important approaches for power optimization with its circuits. application in low power CMOS, quantum computing and A reversible conventional BCD adder was proposed in using conventional reversible gates.
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, nanotechnology and quantum computing. This research proposes quick addition of decimals (QAD) suitable for multi-digit BCD addition, using reversible conservative logic. The design makes use of reversible fault tolerant Fredkin gates only. The implementation strategy is to reduce the number of levels of delay there by increasing the speed, which is the most important factor for high speed circuits.
Resumo:
This paper presents a performance analysis of reversible, fault tolerant VLSI implementations of carry select and hybrid decimal adders suitable for multi-digit BCD addition. The designs enable partial parallel processing of all digits that perform high-speed addition in decimal domain. When the number of digits is more than 25 the hybrid decimal adder can operate 5 times faster than conventional decimal adder using classical logic gates. The speed up factor of hybrid adder increases above 10 when the number of decimal digits is more than 25 for reversible logic implementation. Such highspeed decimal adders find applications in real time processors and internet-based applications. The implementations use only reversible conservative Fredkin gates, which make it suitable for VLSI circuits.