72 resultados para metal doped TiO2
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.
Resumo:
Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.
Resumo:
We present a brief résumé of the history of solidification research and key factors affecting the solidification of fusion welds. There is a general agreement of the basic solidification theory, albeit differing - even confusing - nomenclatures do exist, and Cases 2 and 3 (the Chalmers' basic boundary conditions for solidification, categorized by Savage as Cases) are variably emphasized. Model Frame, a tool helping to model the continuum of fusion weld solidification from start to end, is proposed. It incorporates the general solidification models, of which the pertinent ones are selected for the actual modeling. The basic models are the main solidification Cases 1…4. These discrete Cases are joined with Sub-Cases: models of Pfann, Flemings and others, bringing needed Sub-Case variables into the model. Model Frame depicts a grain growing from the weld interface to its centerline. Besides modeling, the Model Frame supports education and academic debate. The new mathematical modeling techniques will extend its use into multi-dimensional modeling, introducing new variables and increasing the modeling accuracy. We propose a model: melting/solidification-model (M/S-model) - predicting the solute profile at the start of the solidification of a fusion weld. This Case 3-based Sub-Case takes into account the melting stage, the solute back-diffusion in the solid, and the growth rate acceleration typical to fusion welds. We propose - based on works of Rutter & Chalmers, David & Vitek and our experimental results on copper - that NEGS-EGS-transition is not associated only with cellular-dendritic-transition. Solidification is studied experimentally on pure and doped copper with welding speed range from 0 to 200 cm/min, with one test at 3000 cm/min. Found were only planar and cellular structures, no dendrites - columnar or equiaxed. Cell sub structures: rows of cubic elements we call "cubelettes", "cell-bands" and "micro-cells", as well as an anomalous crack morphology "crack-eye", were detected, as well as microscopic hot crack nucleus we call "grain-lag cracks", caused by a grain slightly lagging behind its neighbors in arrival to the weld centerline. Varestraint test and R-test revealed a change of crack morphologies from centerline cracks to grainand cell boundary cracks with an increasing welding speed. High speed made the cracks invisible to bare eye and hardly detectable with light microscope, while electron microscope often revealed networks of fine micro-cracks.
Resumo:
For advanced devices in the application fields of data storage, solar cell and biosensing, one of the major challenges to achieve high efficiency is the fabrication of nanopatterned metal oxide surfaces. Such surfaces often require both precise structure at the nanometer scale and controllable patterned structure at the macro scale. Nowadays, the dominating candidates to fabricate nanopatterned surfaces are the lithographic technique and block-copolymer masks, most of which are unfortunately costly and inefficient. An alternative bottom-up approach, which involves organic/inorganic self-assembly and dip-coating deposition, has been studied intensively in recent years and has proven to be an effective technique for the fabrication of nanoperforated metal oxide thin films. The overall objective of this work was to optimize the synthesis conditions of nanoperforated TiO2 (NP-TiO2) thin films, especially to be compatible with mixed metal oxide systems. Another goal was to develop fabrication and processing of NP-TiO2 thin films towards largescale production and seek new applications for solar cells and biosensing. Besides the traditional dip-coating and drop-casting methods, inkjet printing was used to prepare thin films of metal oxides, with the advantage of depositing the ink onto target areas, further enabling cost-effective fabrication of micro-patterned nanoperforated metal oxide thin films. The films were characterized by water contact angle determination, Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Grazing Incidence XRay Diffraction. In this study, well-ordered zinc titanate nanoperforated thin films with different Zn/Ti ratios were produced successfully with zinc precursor content up to 50 mol%, and the dominating phase was Zn2Ti3O8. NP-TiO2 structures were also obtained by a cost-efficient means, namely inkjet printing, at both ambient temperature and 60 °C. To further explore new biosensing applications of nanoperforated oxide thin films, inkjet printing was used for the fabrication of both continuous and patterned polymeric films onto NP-TiO2 and perfluorinated phosphate functionalized NP-TiO2 substrates, respectively. The NP-TiO2 films can be also functionalized with a fluoroalkylsilane, resulting in hydrophobic surfaces on both titania and silica. The surface energy contrast in the nanoperforations can be tuned by irradiating the films with UV light, which provides ideal model systems for wettability studies.
Resumo:
Selostus: Etelä-Savon viljelysmaan arseeni- ja raskasmetallipitoisuudet
Resumo:
Abstract
Resumo:
This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.
Resumo:
Alikehittynyt infrastruktuuri, tiukat säädökset ja säädösten tulkitseminen, sekä monimutkaiset verotuskäytännöt ovat aiheuttaneet ongelmia suomalaisille Alikehittynyt infrastruktuuri, tiukat säädökset ja säädösten tulkitseminen, sekä monimutkaiset verotuskäytännöt ovat aiheuttaneet ongelmia suomalaisille yrityksille Kiinassa. Tutkimuksen perusteella yritykset eivät pysty vaikuttamaan infrastruktuurin kehittymiseen tai säädösten implementointiin, mutta ylläpitämällä suhteita ja valitsemalla oikeat partnerit yritykset pystyvät hallitsemaan ongelma-alueitaan. Etenkin ulkomaalaisille yrityksille oikean logistiikkaoperaattorin valinta on tärkeätä ja huomioon ottaen palvelutason, kulttuuritaustan sekä kansainväliset operaatiot on ulkomaalaisten yritysten tehokkaampaa käyttää kansainvälisiä operaattoreita kuin paikallisia toimijoita, jotkaovat usein halvempia, mutta eivät pysty toimimaan kansainvälisellä tasolla. Vientiin keskittyneiden yritysten tulisi sijoittua vapaakauppa-alueille tai vientiin painottuneille teollisuusalueille. Kyseisillä alueilla liiketoiminta mannermaahan on rajoitettu, eivätkä alueet täten sovellu yrityksille, jotka ovat keskittyneet Kiinan markkinoille. Paikallisesti operoivien yritysten tulisi sijoittua normaaleihin teollisuuspuistoihin ja käyttää tullin valvomia varastoja tukemaan kansainvälisiä toimintojaan.Tulisi myös muistaa etteivät kiinalaiset teollisuuspuistot täytä kansainvälisiä kriteerejä, joten säädöksiin on tärkeätä tutustua huolella jamielipiteitä kerätä toisilta yrityksiltä. Kiinassa merkittävimmät logistiikkaongelmat ilmenevät tuonnin ja viennin yhteydessä, jolloin säädökset ja toimintamallit ovat kontrolloidumpia. Etenkin tullaus- ja arvonlisävero ongelmat liittyvät kiinteästi tuonti- ja vientiprosessiin. Tutkimuksen tulokset osoittivat, että tullausprosessi tehostuu yhteistyön ja koulutuksen kautta, mutta arvonlisäverosta aiheutuvien kustannusten minimointi vaatii logistiikkapuistojen käyttöä. Mikäli asiakas haluaa tehdä tullauksen kotiprovinssissaan tai yritys tekee kauppaa ALV -vapautettujen yritysten kanssa, tulisi logistiikkapuistojen käyttöä lisätä. Käytettäessä logistiikkapuistoja yritykset välttävät tuotteiden kuljetukset Hongkongiin jatakaisin säästäen huomattavasti kustannuksissa ja toimitusajoissa. Logistiikkapuistoja on myös mahdollista käyttää ratkaisuna kasvaviin ja viivästyviin ALV palautuksiin. Tutkimuksen tulosten mukaan toimintaympäristö ja vientipainotteinen valmistus ohjaavat 3PL yritysten valintaa ja vaihtoehtoisten logistiikkapalvelujen implementointia. Etabloiduttaessavapaakauppa-alueille vientiin ja tuontiin liittyvät ongelmatekijät vahvistuvat sekä rajoitukset kiinan liiketoimintaan kasvavat, mikä tekee yhteistyönkansainvälisten logistiikkaoperaattoreiden kanssa välttämättömäksi ja kannustaa hyödyntämään logistiikkapuistoja.
Resumo:
This report illustrates a comparative study of various joining methods involved in sheet metal production. In this report it shows the selection of joining methods, which includes comparing the advantages and disadvantages of a method over the other ones and choosing the best method for joining. On the basis of various joining process from references, a table is generated containing set of criterion that helps in evaluation of various sheet metal joining processes and in selecting the most suitable process for a particular product. Three products are selected and a comprehensive study of the joining methods is analyzed with the help of various parameters. The table thus is the main part of the analysis process of this study and can be advanced with the beneficial results. It helps in a better and easy understanding and comparing the various methods, which provides the foundation of this study and analysis. The suitability of the joining method for various types of cases of different sheet metal products can be tested with the help of this table. The sections of the created table display the requirements of manufacturing. The important factor has been considered and given focus in the table, as how the usage of these parameters is important in percentages according to particular or individual case. The analysis of the methods can be extended or altered by changing the parameters according to the constraint. The use of this table is demonstrated by pertaining the cases from sheet metal production.
Resumo:
Magnetic field dependencies of Hall coefficient and magnetoresistivity are investigated in classical and quantizing magnetic fields in p-Bi2Te3 crystals heavily doped with Sn grown by Czochralsky method. Magnetic field was parallel to the trigonal axis C3. Shubnikov-de Haas effect and quantum oscillations of the Hall coefficient were measured at temperatures 4.2 K and 11 K. On the basis of the magnetic field dependence of the Hall coefficient a method of estimation of the Hall factor and Hall mobility using the Drabble- Wolf six ellipsoid model is proposed. Shubnikov-de Haas effect and quantum oscillations of the Hall coefficient were observed at 4.2 K and 11 K. New evidence for the existence of the narrow band of Sn impurity states was shown. This band is partly filled by electrons and it is overlapping with the valence states of the light holes. Parameters of the impurity states, their energy ESn - 15 meV, band broadening ¿<< k0T and localization radius of the impuritystate R - 30 Å were obtained.