30 resultados para ecological segmentation
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The main objective of this study was todo a statistical analysis of ecological type from optical satellite data, using Tipping's sparse Bayesian algorithm. This thesis uses "the Relevence Vector Machine" algorithm in ecological classification betweenforestland and wetland. Further this bi-classification technique was used to do classification of many other different species of trees and produces hierarchical classification of entire subclasses given as a target class. Also, we carried out an attempt to use airborne image of same forest area. Combining it with image analysis, using different image processing operation, we tried to extract good features and later used them to perform classification of forestland and wetland.
Resumo:
Segmentointi on strateginen työkalu, joka tehostaa yrityksen resurssien käyttöä ja siten vaikuttaa kaikkiin asiakkuuksiin liittyviin liiketoimintaprosesseihin. Työn tavoitteena oli muodostaa segmentointimalli (sisältää sekä segmentointiprosessin että kriteerit) yritysinternetmarkkinoille. Työn tuloksia voidaan kuitenkin tulkita ja soveltaa laajemmin korkean teknologian yrityspalvelumarkkinoille. Tämä tutkielma lisää tietämystämme ja tarjoaa uudenlaisen näkemyksen segmentointiin korkean teknologian yrityspalvelumarkkinoilla. Työssä kuvataan korkean teknologian ja yritys- sekä palvelumarkkinoinnin erityispiirteitä ja kuinka nämä tekijät vaikuttavat segmentointimallin. Tutkimuksessa selvitettiin kohdeyrityksen nykyiset segmentointikäytännöt henkilökohtaisin asiantuntijahaastatteluin. Haastatteluiden avulla luotiin kuva nykyisistä lähestymistavoista sekä niiden lähtökohdista, vahvuuksista ja haasteista. Haastatteluiden analysoinnin jälkeen perustettiin projekti segmentoinnin kehittämiseksi. Työ tuloksena luotiin segmentointimalli, joka tarjoaa vankan perustan segmentoinnin kehittämiselle jatkuvana prosessina. Työssä esitetään segmentoinnin integroimista yrityksen asiakkuuksiin liittyviin liiketoimintaprosesseihin, joka usein puuttuu aiemmista töistä, sekä informaationkulun tehostamista segmentoinnin hyödyntämiseksi tehokkaammin. Segmentointi on strateginen työkalu ja vaatii siksi ylemmän johdon tuen ja sitoutumisen. Oikein sovellettuna segmentointi tarjoaa liiketoiminnalle mahdollisuuden merkittäviin etuihin kuten asiakastyytyväisyyden ja kannattavuuden kehittämiseen.
Resumo:
Markkinasegmentointi nousi esiin ensi kerran jo 50-luvulla ja se on ollut siitä lähtien yksi markkinoinnin peruskäsitteistä. Suuri osa segmentointia käsittelevästä tutkimuksesta on kuitenkin keskittynyt kuluttajamarkkinoiden segmentointiin yritys- ja teollisuusmarkkinoiden segmentoinnin jäädessä vähemmälle huomiolle. Tämän tutkimuksen tavoitteena on luoda segmentointimalli teollismarkkinoille tietotekniikan tuotteiden ja palveluiden tarjoajan näkökulmasta. Tarkoituksena on selvittää mahdollistavatko case-yrityksen nykyiset asiakastietokannat tehokkaan segmentoinnin, selvittää sopivat segmentointikriteerit sekä arvioida tulisiko tietokantoja kehittää ja kuinka niitä tulisi kehittää tehokkaamman segmentoinnin mahdollistamiseksi. Tarkoitus on luoda yksi malli eri liiketoimintayksiköille yhteisesti. Näin ollen eri yksiköiden tavoitteet tulee ottaa huomioon eturistiriitojen välttämiseksi. Tutkimusmetodologia on tapaustutkimus. Lähteinä tutkimuksessa käytettiin sekundäärisiä lähteitä sekä primäärejä lähteitä kuten case-yrityksen omia tietokantoja sekä haastatteluita. Tutkimuksen lähtökohtana oli tutkimusongelma: Voiko tietokantoihin perustuvaa segmentointia käyttää kannattavaan asiakassuhdejohtamiseen PK-yritys sektorilla? Tavoitteena on luoda segmentointimalli, joka hyödyntää tietokannoissa olevia tietoja tinkimättä kuitenkaan tehokkaan ja kannattavan segmentoinnin ehdoista. Teoriaosa tutkii segmentointia yleensä painottuen kuitenkin teolliseen markkinasegmentointiin. Tarkoituksena on luoda selkeä kuva erilaisista lähestymistavoista aiheeseen ja syventää näkemystä tärkeimpien teorioiden osalta. Tietokantojen analysointi osoitti selviä puutteita asiakastiedoissa. Peruskontaktitiedot löytyvät mutta segmentointia varten tietoa on erittäin rajoitetusti. Tietojen saantia jälleenmyyjiltä ja tukkureilta tulisi parantaa loppuasiakastietojen saannin takia. Segmentointi nykyisten tietojen varassa perustuu lähinnä sekundäärisiin tietoihin kuten toimialaan ja yrityskokoon. Näitäkään tietoja ei ole saatavilla kaikkien tietokannassa olevien yritysten kohdalta.
Resumo:
In this work we study the classification of forest types using mathematics based image analysis on satellite data. We are interested in improving classification of forest segments when a combination of information from two or more different satellites is used. The experimental part is based on real satellite data originating from Canada. This thesis gives summary of the mathematics basics of the image analysis and supervised learning , methods that are used in the classification algorithm. Three data sets and four feature sets were investigated in this thesis. The considered feature sets were 1) histograms (quantiles) 2) variance 3) skewness and 4) kurtosis. Good overall performances were achieved when a combination of ASTERBAND and RADARSAT2 data sets was used.
Resumo:
The underlying cause of many human autoimmune diseases is unknown, but several environmental factors are implicated in triggering the self-destructive immune reactions. Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system, potentially leading to persistent neurological deterioration. The cause of MS is not known, and apart from immunomodulatory treatments there is no cure. In the early phase of the disease, relapsing-remitting MS (RR-MS) is characterized by unpredictable exacerbations of the neurological symptoms called relapses, which can occur at different intervals ranging from 4 weeks to several years. Microbial infections are known to be able to trigger MS relapses, and the patients are instructed to avoid all factors that might increase the risk of infections and to properly use antibiotics as well as to take care of dental hygiene. Among those environmental factors which are known to increase susceptibility to infections, high ambient air inhalable particulate matter levels affect all people within a geographical region. During the period of interest in this thesis, the occurrence of MS relapses could be effectively reduced by injections of interferon, which has immunomodulatory and antiviral properties. In this thesis, ecological and epidemiological analyses were used to study the possible connection between MS relapse occurrence, population level viral infections and air quality factors, as well as the effects of interferon medication. Hospital archive data were collected retrospectively from 1986-2001, a period in time ranging from when interferon medication first became available until just before other disease-modifying MS therapies arrived on the market. The grouped data were studied with logistic regression and intervention analysis, and individual patient data with survival analysis. Interferons proved to be effective in the treatment of MS in this observational study, as the amount of MS exacerbations was lower during interferon use as compared to the time before interferon treatment. A statistically significant temporal relationship between MS relapses and inhalable particular matter (PM10) concentrations was found in this study, which implies that MS patients are affected by the exposure to PM10. Interferon probably protected against the effect of PM10, because a significant increase in the risk of exacerbations was only observed in MS patients without interferon medication following environmental exposure to population level specific viral infections and PM10. Apart from being antiviral, interferon could thus also attenuate the enhancement of immune reactions caused by ambient air PM10. The retrospective approach utilizing carefully constructed hospital records proved to be an economical and reliable source of MS disease information for statistical analyses.
Resumo:
Segmentointi on perinteisesti ollut erityisesti kuluttajamarkkinoinnin työkalu, mutta siirtymä tuotteista palveluihin on lisännyt segmentointitarvetta myös teollisilla markkinoilla. Tämän tutkimuksen tavoite on löytää selkeästi toisistaan erottuvia asiakasryhmiä suomalaisen liikkeenjohdon konsultointiyritys Synocus Groupin tarjoaman case-materiaalin pohjalta. K-means-klusteroinnin avulla löydetään kolme potentiaalista markkinasegmenttiä perustuen siihen, mitkä tarjoamaelementit 105 valikoitua suomalaisen kone- ja metallituoteteollisuuden asiakasta ovat maininneet tärkeimmiksi. Ensimmäinen klusteri on hintatietoiset asiakkaat, jotka laskevat yksikkökohtaisia hintoja. Toinen klusteri koostuu huolto-orientoituneista asiakkaista, jotka laskevat tuntikustannuksia ja maksimoivat konekannan käyttötunteja. Tälle kohderyhmälle kannattaisi ehkä markkinoida teknisiä palveluja ja huoltosopimuksia. Kolmas klusteri on tuottavuussuuntautuneet asiakkaat, jotka ovat kiinnostuneita suorituskyvyn kehittämisestä ja laskevat tonnikohtaisia kustannuksia. He tavoittelevat alempia kokonaiskustannuksia lisääntyneen suorituskyvyn, pidemmän käyttöiän ja alempien huoltokustannusten kautta.
Resumo:
Speaker diarization is the process of sorting speeches according to the speaker. Diarization helps to search and retrieve what a certain speaker uttered in a meeting. Applications of diarization systemsextend to other domains than meetings, for example, lectures, telephone, television, and radio. Besides, diarization enhances the performance of several speech technologies such as speaker recognition, automatic transcription, and speaker tracking. Methodologies previously used in developing diarization systems are discussed. Prior results and techniques are studied and compared. Methods such as Hidden Markov Models and Gaussian Mixture Models that are used in speaker recognition and other speech technologies are also used in speaker diarization. The objective of this thesis is to develop a speaker diarization system in meeting domain. Experimental part of this work indicates that zero-crossing rate can be used effectively in breaking down the audio stream into segments, and adaptive Gaussian Models fit adequately short audio segments. Results show that 35 Gaussian Models and one second as average length of each segment are optimum values to build a diarization system for the tested data. Uniting the segments which are uttered by same speaker is done in a bottom-up clustering by a newapproach of categorizing the mixture weights.