13 resultados para Thermodynamic properties
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The theory of electrolyte solutions was described by explaining Debye–Hückel theory and deriving the Debye–Hückel equation for the mean activity coefficient. Simple two-parameter Hückel equation was used for the calculation of the activity coefficients of aqueous hydrobromic and hydriodic acids up to 0.5 mol/kg at temperatures from (0 to 60) °C and from (0 to 50) °C, respectively. The parameters were observed to be independent of the temperature. The Hückel equation for the osmotic coefficients of water in the studied solutions was compared to that of Pitzer model by predicting the vapor pressures up to 1 mol/kg at 25 °C. The experimental vapor pressures over the reference electrolyte solutions were calculated with the Pitzer equation for the osmotic coefficients for isopiestic data in this comparison. The simple Hückel model was found to be equally good as the Pitzer model for both hydrobromic and hydriodic acids up to 0.5 mol/kg at 25 °C but applies also to other temperatures studied.
Resumo:
In this study, a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid is presented. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The present research is a part of a study on the unsteady dynamics of an organic Rankine cycle power plant and it will be a part of a dynamic process model. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen was to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties has been used, because most of the calculation time is spent in calculating the fluid properties. The boiler was divided into elements. The values of the thermodynamic properties and mass flows were calculated in the nodes that connect the elements. Dynamic behaviour was limited to the process fluid and tube wall, and the heat source was regarded as to be steady. The elements that connect the preheater to thevaporiser and the vaporiser to the superheater were treated in a special way that takes into account a flexible change from one part to the other. The model consists of the calculation of the steady state initial distribution of the variables in the nodes, and the calculation of these nodal values in a dynamic state. The initial state of the boiler was received from a steady process model that isnot a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source and the process fluid. A brief examination of the oscillation around a steady state, the so-called Ledinegg instability, was done. This examination showed that the pressure drop in the boiler is a third degree polynomial of the mass flow rate, and the stability criterion is a second degree polynomial of the enthalpy change in the preheater. The numerical examination showed that oscillations did not exist in the example case. The dynamic boiler model was analysed for linear and step changes of the entering fluid temperatures and flow rates.The problem for verifying the correctness of the achieved results was that there was no possibility o compare them with measurements. This is why the only way was to determine whether the obtained results were intuitively reasonable and the results changed logically when the boundary conditions were changed. The numerical stability was checked in a test run in which there was no change in input values. The differences compared with the initial values were so small that the effects of numerical oscillations were negligible. The heat source side tests showed that the model gives results that are logical in the directions of the changes, and the order of magnitude of the timescale of changes is also as expected. The results of the tests on the process fluid side showed that the model gives reasonable results both on the temperature changes that cause small alterations in the process state and on mass flow rate changes causing very great alterations. The test runs showed that the dynamic model has no problems in calculating cases in which temperature of the entering heat source suddenly goes below that of the tube wall or the process fluid.
Resumo:
Kaksifaasivirtauksen kuvaamiseen käytettävät mallit, ja menetelmät kaksifaasivirtauksen painehäviön määrittämiseksi kehittyvät yhä monimutkaisimmiksi. Höyrystinputkissa tapahtuvien painehäviöiden arvioinnin vaatiman laskennan suorittamiseksi tietokoneohjelman kehittäminen on välttämätöntä. Tässä työssä on kehitetty itsenäinen PC-ohjelma painehäviöiden arvioimiseksi pakotetulle konvektiovirtaukselle pystysuorissa höyrykattilan höyrystinputkissa. Veden ja vesihöyryn aineominaisuuksien laskentaan käytetään IAPWS-IF97 –yhtälökokoelmaa sekä muita tarvittavia IAPWS:n suosittelemia yhtälöitä. Höyrystinputkessa kulloinkin vallitsevan virtausmuodon määrittämiseen käytetään sovelluskelpoisia virtausmuotojen välisiä rajoja kuvaavia yhtälöitä. Ohjelmassa käytetään painehäviön määritykseen kirjallisuudessa julkaistuja yhtälöitä, virtausmuodosta riippuen, alijäähtyneelle virtaukselle, kupla-, tulppa- ja rengasvirtaukselle sekä tulistetun höyryn virtaukselle. Ohjelman laskemia painehäviöarvioita verrattiin kirjallisuudesta valittuihin mittaustuloksiin. Laskettujen painehäviöiden virhe vaihteli välillä –19.5 ja +23.9 %. Virheiden itseisarvojen keskiarvo oli 12.8 %.
Resumo:
Diplomityön tarkoituksena on luoda uraaniheksafluoridista käyttäjän määrittelemä aine kaupallisen virtauslaskentaohjelmiston (FLUENT) ainekirjastoon ja simuloida aineen käyttäytymistä sulaessa ja kiinteyttäessä. Työn kirjallisuusosassa on esitelty aiempia tutkimuksia uraaniheksafluoridin termodynaamisista ominaisuuksista, joita käytetään aineen määrittelyssä. Kokeellisessa osassa on käytetty virtauslaskentaohjelmiston Eulerilaista monifaasimallia sulamisen ja kiinteytymisen tarkasteluun kaksidimensionaalisessa sylinterissä.
Resumo:
The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.
Resumo:
In this thesis, the sorption and elastic properties of the cation-exchange resins were studied to explain the liquid chromatographic separation of carbohydrates. Na+, Ca2+ and La3+ form strong poly(styrene-co-divinylbenzene) (SCE) as well as Na+ and Ca2+ form weak acrylic (WCE) cation-exchange resins at different cross-link densities were treated within this work. The focus was on the effects of water-alcohol mixtures, mostly aqueous ethanol, and that of the carbohydrates. The carbohydrates examined were rhamnose, xylose, glucose, fructose, arabinose, sucrose, xylitol and sorbitol. In addition to linear chromatographic conditions, non-linear conditions more typical for industrial applications were studied. Both experimental and modeling aspectswere covered. The aqueous alcohol sorption on the cation-exchangers were experimentally determined and theoretically calculated. The sorption model includes elastic parameters, which were obtained from sorption data combined with elasticity measurements. As hydrophilic materials cation-exchangers are water selective and shrink when an organic solvent is added. At a certain deswelling degree the elastic resins go through glass transition and become as glass-like material. Theincreasing cross-link level and the valence of the counterion decrease the sorption of solvent components in the water-rich solutions. The cross-linkage or thecounterions have less effect on the water selectivity than the resin type or the used alcohol. The amount of water sorbed is higher in the WCE resin and, moreover, the WCE resin is more water selective than the corresponding SCE resin. Theincreased aliphatic part of lower alcohols tend to increase the water selectivity, i.e. the resins are more water selective in 2-propanol than in ethanol solutions. Both the sorption behavior of carbohydrates and the sorption differences between carbohydrates are considerably affected by the eluent composition and theresin characteristics. The carbohydrate sorption was experimentally examined and modeled. In all cases, sorption and moreover the separation of carbohydrates are dominated by three phenomena: partition, ligand exchange and size exclusion. The sorption of hydrophilic carbohydrates increases when alcohol is added into the eluent or when carbohydrate is able to form coordination complexes with the counterions, especially with multivalent counterions. Decreasing polarity of the eluent enhances the complex stability. Size exclusion effect is more prominent when the resin becomes tighter or carbohydrate size increases. On the other hand,the elution volumes between different sized carbohydrates decreases with the decreasing polarity of the eluent. The chromatographic separation of carbohydrateswas modeled, using rhamnose and xylose as target molecules. The thermodynamic sorption model was successfully implemented in the rate-based column model. The experimental chromatographic data were fitted by using only one adjustable parameter. In addition to the fitted data also simulated data were generated and utilized in explaining the effect of the eluent composition and of the resin characteristics on the carbohydrate separation.
Resumo:
The objective of industrial crystallization is to obtain a crystalline product which has the desired crystal size distribution, mean crystal size, crystal shape, purity, polymorphic and pseudopolymorphic form. Effective control of the product quality requires an understanding of the thermodynamics of the crystallizing system and the effects of operation parameters on the crystalline product properties. Therefore, obtaining reliable in-line information about crystal properties and supersaturation, which is the driving force of crystallization, would be very advantageous. Advanced techniques, such asRaman spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and in-line imaging techniques, offer great potential for obtaining reliable information during crystallization, and thus giving a better understanding of the fundamental mechanisms (nucleation and crystal growth) involved. In the present work, the relative stability of anhydrate and dihydrate carbamazepine in mixed solvents containing water and ethanol were investigated. The kinetics of the solvent mediated phase transformation of the anhydrate to hydrate in the mixed solvents was studied using an in-line Raman immersion probe. The effects of the operation parameters in terms of solvent composition, temperature and the use of certain additives on the phase transformation kineticswere explored. Comparison of the off-line measured solute concentration and the solid-phase composition measured by in-line Raman spectroscopy allowedthe identification of the fundamental processes during the phase transformation. The effects of thermodynamic and kinetic factors on the anhydrate/hydrate phase of carbamazepine crystals during cooling crystallization were also investigated. The effect of certain additives on the batch cooling crystallization of potassium dihydrogen phosphate (KDP) wasinvestigated. The crystal growth rate of a certain crystal face was determined from images taken with an in-line video microscope. An in-line image processing method was developed to characterize the size and shape of thecrystals. An ATR FTIR and a laser reflection particle size analyzer were used to study the effects of cooling modes and seeding parameters onthe final crystal size distribution of an organic compound C15. Based on the obtained results, an operation condition was proposed which gives improved product property in terms of increased mean crystal size and narrowersize distribution.
Resumo:
The properties and cosmological importance of a class of non-topological solitons, Q-balls, are studied. Aspects of Q-ball solutions and Q-ball cosmology discussed in the literature are reviewed. Q-balls are particularly considered in the Minimal Supersymmetric Standard Model with supersymmetry broken by a hidden sector mechanism mediated by either gravity or gauge interactions. Q-ball profiles, charge-energy relations and evaporation rates for realistic Q-ball profiles are calculated for general polynomial potentials and for the gravity mediated scenario. In all of the cases, the evaporation rates are found to increase with decreasing charge. Q-ball collisions are studied by numerical means in the two supersymmetry breaking scenarios. It is noted that the collision processes can be divided into three types: fusion, charge transfer and elastic scattering. Cross-sections are calculated for the different types of processes in the different scenarios. The formation of Q-balls from the fragmentation of the Aflieck-Dine -condensate is studied by numerical and analytical means. The charge distribution is found to depend strongly on the initial energy-charge ratio of the condensate. The final state is typically noted to consist of Q- and anti-Q-balls in a state of maximum entropy. By studying the relaxation of excited Q-balls the rate at which excess energy can be emitted is calculated in the gravity mediated scenario. The Q-ball is also found to withstand excess energy well without significant charge loss. The possible cosmological consequences of these Q-ball properties are discussed.
Resumo:
Tiivistelmä: Hidasliukoisten fosforilannoitteiden ominaisuudet ja käyttökelpoisuus suometsien lannoituksessa. Kirjallisuuteen perustuva tarkastelu