23 resultados para 770405 Physical and chemical conditions

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface chemistry is of great importance in plant biomass engineering and applications. The surface chemical composition of biomass which includes lignin, carbohydrates and extractives influences its interactions with chemical agents, such as pulp processing/papermaking chemicals, or enzymes for different purposes. In this thesis, the changes in the surface chemical composition of lignocellulosic biomass after physical modification for the improvement of resulting paper properties and chemical treatment for the enhancement of enzymatic hydrolysis were investigated. Low consistency (LC) refining was used as physical treatment of bleached softwood and hardwood pulp samples, and the surface chemistry of refined samples was investigated. The refined pulp was analysed as whole pulp while the fines-free fibre samples were characterized separately. The fines produced in LCrefining contributed to an enlarged surface specific area as well as the change of surface coverage by lignin and extractives, as investigated by X-ray photoelectron spectroscopy (XPS). The surface coverage by lignin of the whole pulp decreased after refining while the surface coverage by extractives increased both for pine and eucalyptus. In the case of pine, the removal of fines resulted in reduction of the surface coverage by extractives, while the surface coverage by lignin increased on fibre sample (without fines). In the case of eucalyptus, the surface coverage by lignin of fibre samples decreased after the removal of fines. In addition, the surface distribution of carbohydrates, lignin and extractives of pine and eucalyptus samples was determined by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). LC-refining increased the amounts of pentose, hexose and extractives on the surface of pine samples. ToF-SIMS also gave clear evidence about xylan deposition and reduction of surface lignin distribution on the fibre of eucalyptus. However, the changes in the surface chemical composition during the physical treatment has led to an increase in the adsorption of fluorescent whitening agents (FWAs) on fibres due to a combination of electro-static forces, specific surface area of fibres and hydrophobic interactions. Various physicochemical pretreatments were conducted on wood and non-wood biomass for enhancing enzymatic hydrolysis of polysaccharides, and the surface chemistry of the pretreated and enzymatically hydrolysed samples was investigated by field emission scanning electron microscopy (FE-SEM), XPS and ToF-SIMS. A hydrotrope was used as a relatively novel pretreatment technology both in the case of wood and non-wood biomass. For comparison, ionic liquid and hydrothermal pretreatments were applied on softwood and hardwood as well. Thus, XPS analysis showed that the surface lignin was more efficiently removed by hydrotropic pretreatment compared to ionic liquid or hydrothermal pretreatments. SEM analysis also found that already at room temperature the ionic liquid pretreatments were more effective in swelling the fibres compared with hydrotropic pretreatment at elevated temperatures. The enzymatic hydrolysis yield of hardwood was enhanced due to the decrease in surface coverage of lignin, which was induced by hydrotropic treatment. However, hydrotropic pretreatment was not appropriate for softwood because of the predominance of guaiacyl lignin structure in this material. In addition, the reduction of surface lignin and xylan during pretreatment and subsequent increase in cellulose hydrolysis by enzyme could be observed from ToF-SIMS results. The characterisation of the non-wood biomass (e.g. sugarcane bagasse and common reed) treated by hydrotropic method, alkaline and alkaline hydrogen peroxide pretreatments were carried out by XPS and ToF-SIMS. According to the results, the action for the removal of the surface lignin of non-wood biomass by hydrotropic pretreatment was more significant compared to alkaline and alkaline hydrogen peroxide pretreatments, although a higher total amount of lignin could be removed by alkaline and alkaline hydrogen peroxide pretreatment. Furthermore, xylan could be remarkably more efficiently removed by hydrotropic method. Therefore, the glucan yield achieved from hydrotropic treated sample was higher than that from samples treated with alkaline or alkaline hydrogen peroxide. Through the use of ToF-SIMS, the distribution and localization of lignin and carbohydrates on the surface of ignocelluloses during pretreatment and enzymatic hydrolysis could be detected, and xylan degradation during enzymatic hydrolysis could also be assessed. Thus, based on the results from XPS and ToF-SIMS, the mechanism of the hydrotropic pretreatment in improving the accessibility of enzymes to fibre and further ameliorating of the enzymatic saccharification could be better elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä väitöstutkimuksessa tutkittiin fysikaaliskemiallisten olosuhteiden ja toimintaparametrien vaikutusta juustoheran fraktiointiin. Kirjallisuusosassa on käsitelty heran ympäristövaikutusta, heran hyödyntämistä ja heran käsittelyä kalvotekniikalla. Kokeellinen osa on jaettu kahteen osaan, joista ensimmäinen käsittelee ultrasuodatusta ja toinen nanosuodatusta juustoheran fraktioinnissa. Ultrasuodatuskalvon valinta tehtiin perustuen kalvon cut-off lukuun, joka oli määritetty polyetyleeniglykoliliuoksilla olosuhteissa, joissa konsentraatiopolariosaatioei häiritse mittausta. Kriittisen vuon konseptia käytettiin sopivan proteiinikonsentraation löytämiseksi ultrasuodatuskokeisiin, koska heraproteiinit ovat tunnetusti kalvoa likaavia aineita. Ultrasuodatuskokeissa tutkittiin heran eri komponenttien suodattumista kalvon läpi ja siihen vaikuttavia ominaisuuksia. Herapermeaattien peptidifraktiot analysoitiin kokoekskluusiokromatografialla ja MALDI-TOF massaspektrometrillä. Kokeissa käytettävien nanosuodatuskalvojen keskimääräinen huokoskoko analysoitiin neutraaleilla liukoisilla aineilla ja zeta-potentiaalit virtauspotentiaalimittauksilla. Aminohappoja käytettiin malliaineina tutkittaessa huokoskoon ja varauksen merkitystä erotuksessa. Aminohappojen retentioon vaikuttivat pH ja liuoksen ionivahvuus sekä molekyylien väliset vuorovaikutukset. Heran ultrasuodatuksessa tuotettu permeaatti, joka sisälsi pieniä peptidejä, laktoosia ja suoloja, nanosuodatettiin happamassa ja emäksisessä pH:ssa. Emäksisissä oloissa tehdyssä nanosuodatuksessa foulaantumista tapahtui vähemmän ja permeaattivuo oli parempi. Emäksisissä oloissa myös selektiivisyys laktoosin erotuksessa peptideistä oli parempi verrattuna selektiivisyyteen happamissa oloissa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many industries, such as petroleum production, and the petrochemical, metal, food and cosmetics industries, wastewaters containing an emulsion of oil in water are often produced. The emulsions consist of water (up to 90%), oils (mineral, animal, vegetable and synthetic), surfactants and other contaminates. In view of its toxic nature and its deleterious effects on the surrounding environment (soil, water) such wastewater needs to be treated before release into natural water ways. Membrane-based processes have successfully been applied in industrial applications and are considered as possible candidates for the treatment of oily wastewaters. Easy operation, lower cost, and in some cases, the ability to reduce contaminants below existing pollution limits are the main advantages of these systems. The main drawback of membranes is flux decline due tofouling and concentration polarisation. The complexity of oil-containing systems demands complementary studies on issues related to the mitigation of fouling and concentration polarisation in membranebased ultrafiltration. In this thesis the effect of different operating conditions (factors) on ultrafiltration of oily water is studied. Important factors are normally correlated and, therefore, their effect should be studied simultaneously. This work uses a novel approach to study different operating conditions, like pressure, flow velocity, and temperature, and solution properties, like oil concentration (cutting oil, diesel, kerosene), pH, and salt concentration (CaCl2 and NaCl)) in the ultrafiltration of oily water, simultaneously and in a systematic way using an experimental design approach. A hypothesis is developed to describe the interaction between the oil drops, salt and the membrane surface. The optimum conditions for ultrafiltration and the contribution of each factor in the ultrafiltration of oily water are evaluated. It is found that the effect on permeate flux of the various factors studied strongly depended on the type of oil, the type of membrane and the amount of salts. The thesis demonstrates that a system containing oil is very complex, and that fouling and flux decline can be observed even at very low pressures. This means that only the weak form of the critical flux exists for such systems. The cleaning of the fouled membranes and the influence of different parameters (flow velocity, temperature, time, pressure, and chemical concentration (SDS, NaOH)) were evaluated in this study. It was observed that fouling, and consequently cleaning, behaved differently for the studied membranes. Of the membranes studied, the membrane with the lowest propensity for fouling and the most easily cleaned was the regenerated cellulose membrane (C100H). In order to get more information about the interaction between the membrane and the components of the emulsion, a streaming potential study was performed on the membrane. The experiments were carried out at different pH and oil concentration. It was seen that oily water changed the surface charge of the membrane significantly. The surface charge and the streaming potential during different stages of filtration were measured and analysed being a new method for fouling of oil in this thesis. The surface charge varied in different stages of filtration. It was found that the surface charge of a cleaned membrane was not the same as initially; however, the permeability was equal to that of a virgin membrane. The effect of filtration mode was studied by performing the filtration in both cross-flow and deadend mode. The effect of salt on performance was considered in both studies. It was found that salt decreased the permeate flux even at low concentration. To test the effect of hydrophilicity change, the commercial membranes used in this thesis were modified by grafting (PNIPAAm) on their surfaces. A new technique (corona treatment) was used for this modification. The effect of modification on permeate flux and retention was evaluated. The modified membranes changed their pore size around 33oC resulting in different retention and permeability. The obtained results in this thesis can be applied to optimise the operation of a membrane plant under normal or shock conditions or to modify the process such that it becomes more efficient or effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Greenhouse gases emitted from energy production and transportation are dramatically changing the climate of Planet Earth. As a consequence, global warming is affecting the living conditions of numerous plant and animal species, including ours. Thus the development of sustainable and renewable liquid fuels is an essential global challenge in order to combat the climate change. In the past decades many technologies have been developed as alternatives to currently used petroleum fuels, such as bioethanol and biodiesel. However, even with gradually increasing production, the market penetration of these first generation biofuels is still relatively small compared to fossil fuels. Researchers have long ago realized that there is a need for advanced biofuels with improved physical and chemical properties compared to bioethanol and with biomass raw materials not competing with food production. Several target molecules have been identified as potential fuel candidates, such as alkanes, fatty acids, long carbon‐chain alcohols and isoprenoids. The current study focuses on the biosynthesis of butanol and propane as possible biofuels. The scope of this research was to investigate novel heterologous metabolic pathways and to identify bottlenecks for alcohol and alkane generation using Escherichia coli as a model host microorganism. The first theme of the work studied the pathways generating butyraldehyde, the common denominator for butanol and propane biosynthesis. Two ways of generating butyraldehyde were described, one via the bacterial fatty acid elongation machinery and the other via partial overexpression of the acetone‐butanol‐ethanol fermentation pathway found in Clostridium acetobutylicum. The second theme of the experimental work studied the reduction of butyraldehyde to butanol catalysed by various bacterial aldehyde‐reductase enzymes, whereas the final part of the work investigated the in vivo kinetics of the cyanobacterial aldehyde deformylating oxygenase (ADO) for the generation of hydrocarbons. The results showed that the novel butanol pathway, based on fatty acid biosynthesis consisting of an acyl‐ACP thioesterase and a carboxylic acid reductase, is tolerant to oxygen, thus being an efficient alternative to the previous Clostridial pathways. It was also shown that butanol can be produced from acetyl‐CoA using acetoacetyl CoA synthase (NphT7) or acetyl‐CoA acetyltransferase (AtoB) enzymes. The study also demonstrated, for the first time, that bacterial biosynthesis of propane is possible. The efficiency of the system is clearly limited by the poor kinetic properties of the ADO enzyme, and for proper function in vivo, the catalytic machinery requires a coupled electron relay system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selostus: Ohran kasvun ja typpidynamiikan mallintaminen nykyisissä ja tulevaisuuden olosuhteissa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työn tavoitteena oli tutkia sellumassan suotautumiseen liittyviä tekijöitä Ahlstrom Machineryn Drum Displacer™ -puumassapesurissa (DD-pesuri). Teoriaosassa tarkasteltiin aluksi suotautumisen teoriaa kuitu-vesi-suspensiossa, minkä jälkeen esiteltiin suotautumisnopeuteen vaikuttavia fysikaalisia ja kemiallisia vaikutusmekanismeja. Seuraavaksi kuvattiin massan pesun yleisiä perusteita sekä teoriaa puumassapesureissa. Lopuksi tarkasteltiin pesurien kytkeytymistä muuhun kuitulinjaan sekä prosessista johtuvia pesun toiminnan ulkoisia häiriötekijöitä. Kokeellisen osan aluksi tarkasteltiin paine- ja lämpötilamittauksien avulla massapesurissa vallitsevia prosessioloja. Mittaustulosten perusteella pumppausolot pesurin suodoslinjoissa ovat vaikeahkot ja häiriötilanteita voi esiintyä, mutta käytäntö on osoittanut tästä olevan vain harvoin haittaa prosessin toiminnalle. Pesureissa toteutuneet syrjäytysnopeudet laskettiin ja niitä verrattiin syrjäytystestien antamiin tuloksiin. Kuitulinjasta riippuen testin vastaavuus tehdasprosessiin vaihteli suuresti. Syrjäytystesteillä kokeiltiin myös tehdasprosesseissa usein esiintyvien muuttujien vaikutusta sellukakun syrjäytettävyyteen. Kakun paksuus ja syrjäytyslämpötila vaikuttivat syrjäytysnopeuteen Darcyn lain mukaisesti. Alipaineen massakakun alapuolella havaittiin huonontavan syrjäytysnopeutta verrattuna tilanteeseen, jossa kakun alla vallitsi ilmanpaine. Tämä havainto on selvästi ristiriidassa suotautumisen teorian kanssa. Massakakun muodostumis-pH osoittautui ratkaisevaksi lopulliselle syrjäytysnopeudelle, sillä alkalisissa oloissa muodostetun kuitukakun syrjäytysnopeus ei enää parantunut happamalla syrjäytysnesteellä. Happamissa oloissa muodostetun kakun syrjäytysnopeus oli alkalisista parempi, mutta se alkoi hitaasti alentua, kun syrjäytysneste vaihtui alkaliseen. Massan laimentaminen ennen syrjäytystä alkalisella tehdassuodoksella puhtaan veden sijasta alensi ligniinipitoisella massalla lopullista syrjäytysnopeutta. Shirato-Tillerin mallilla ja Jönssonin staattisella mallilla simuloitiin numeerisesti syrjäytystestiä kahdessa eri pH:ssa, ja simulointituloksia verrattiin vastaavissa oloissa tehtyihin syrjäytystesteihin. Shirato-Tillerin mallin antamien syrjäytysnopeuksien havaittiin olevan lähellä syrjäytystestien nopeuksia, kun Jönssonin mallin antamat tulokset jäivät huomattavasti testituloksia alemmiksi. Herkkyystarkastelussa havaittiin mallien olevan varsin herkkiä parametrien virheille. Hajonta vaadittavien kuituparametrien määrityksissä ja menetelmien työläys rajoittavat numeerisen simuloinnin käytettävyyttä, sillä kuituparametrien määrityksen vaatima työmäärä on ainakin toistaiseksi syrjäytystestiä suurempi. Lopuksi todettiin, että oikeiden syrjäytysolosuhteiden käyttö on ensiarvoisen tärkeää oikeiden tulosten saamiseksi sekä kokeellisessa että numeerisessa simuloinnissa. Nykyinen syrjäytystestilaitteisto on pienin muutoksin käyttökelpoinen, kun massan testaus prosessioloissa tulee rutiininomaiseksi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drying is a major step in the manufacturing process in pharmaceutical industries, and the selection of dryer and operating conditions are sometimes a bottleneck. In spite of difficulties, the bottlenecks are taken care of with utmost care due to good manufacturing practices (GMP) and industries' image in the global market. The purpose of this work is to research the use of existing knowledge for the selection of dryer and its operating conditions for drying of pharmaceutical materials with the help of methods like case-based reasoning and decision trees to reduce time and expenditure for research. The work consisted of two major parts as follows: Literature survey on the theories of spray dying, case-based reasoning and decision trees; working part includes data acquisition and testing of the models based on existing and upgraded data. Testing resulted in a combination of two models, case-based reasoning and decision trees, leading to more specific results when compared to conventional methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafiltration (UF) is widely applied in different separation processes in the pulp and paper industry. The growing need to protect the environment, a lack of pure water and an interest in producing high-value chemicals from compounds present in process waters will probably lead to an increase in the use of UF in the pulp and paper industry. The efficiency and cost-effectiveness of a UF process depends on the applied membrane. The membrane should have a high and stable filtration capacity, a particular selectivity and a long operational lifetime. To meet these requirements a membrane should have a low fouling tendency. In addition, it should withstand the prevailing operational and chemical conditions. This thesis evaluates the performance and applicability of the regenerated cellulose (RC) membranes 00030T and C2 in the treatment of pulp and paper mill process waters based on the requirements above. The results demonstrated that both the tested RC membranes fulfilled well the requirement of high filtration capacity. In addition, in the filtration of a paper mill clear filtrate (CF) the RC membranes were not as greatly affected by variations in the CF quality as a polysulphone membrane. Furthermore, due to their extreme hydrophilicity and weak charge the fouling tendency of the membranes can be expected to be low in pulp and paper mill filtration applications. It is, however, known that fouling cannot be totally avoided even when the membrane is chosen very carefully. This study indicated that carbohydrates influenced negatively on permeability and caused fouling in the filtration of groundwood mill circulation water. Thus, a pre-treatment effectively reducing the amount of carbohydrates might help to maintain a stable capacity. However, the results of the thesis also showed that the removal of some of the possible foulants might just increase the harmful effect of others. Multivariate examination was useful in the understanding of the complicated factors causing the unstable capacity. The thesis also revealed that the 00030T and C2 membranes can be used at high pressure (max. tested pressure 12 bar). The C2 membrane, having a sponge-like substructure, was more pressure resistant, and its performance was more stable at high pressure compared to the UCO30T membrane containing macrovoids in its substructure. Both tested membranes can, according to the results, also be used at temperatures as high as 70°C in acidic, neutral and alkaline conditions. However, the use at extreme conditions might cause faster ageing of the membranes compared to ageing in neutral conditions. The thesis proved that both the tested RC membranes are very suitable for pulp and paper mill applications and that the membranes can be utilised in processes operating in challenging conditions. Thus, they could be used in more demanding applications than supposed earlier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the occurrence of fossil fuels such as oil, gas and coal we found new sources of energy that have played a critical role in the progress of our modern society. Coal is very ample compared to the other two fossil fuels. Global coal reserves at the end of 2005 were estimated at 847,5 billion tones. Along with the major energy sources, coal is the most fast growing fuel on a global basis, it provides 26% of primary energy needs and remains essential to the economies of many developed and developing countries. Coal-fired power generation accounts for 41% of the world‘s total electricity production and in some countries, such as South Africa, Poland, China, Australia, Kazakhstan and India is on very high level. Still, coal utilization represents challenges related to high emissions of air pollutants such as sulphur and nitrogen dioxides, particulate matter, mercury and carbon dioxide. In relation to these a number of technologies have been developed and are in marketable use, with further potential developments towards ―Near Zero Emission‖ coal plants. In present work, coals mined in Russia and countries of Former Soviet Union were reviewed. Distribution of coal reserves on the territory of Russia and the potential for power generation from coal-fired plants across Russia was shown. Physical and chemical properties of coals produced were listed and examined, as main factor influencing on design of the combustion facility and incineration process performance. The ash-related problems in coal-fired boilers were described. The analysis of coal ash of Russia and countries of Former Soviet Union were prepared. Feasible combustion technologies also were reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic nanoparticles are very important in modern industry. These particles are used in many different spheres of life. Nanoparticles have unusual physical and chemical properties connected both with quantum dimensional effects and with the increased role of the surface atoms. Most clearly the difference between the properties of bulk materials and nanoparticles can be seen in the magnetic properties of these materials. The most typical magnetic properties of nanomaterials are superparamagnetism with the size of the cluster from 1 to 10 nm; single-domain magnetic state of nanoclusters and nanostructures up to 20 nm; magnetization processes connected with magnetic cluster ordering and with its forms and sizes; quantum magnetic tunneling effects when magnetization changes by jumps and giant magnetoresistance effects. For research of the magnetic properties of iron-containing nanostructures, it is convenient to apply Mӧssbauer spectroscopy. In this work a number of nano-sized samples of iron oxides were examined by Mössbauer spectroscopy. The Mössbauer spectra of nanoparticles with various sizes were obtained. Mössbauer spectra of iron oxide nanoparticles were compared with the spectra of bulk samples. It was shown how the spectra of iron oxide nanoparticles change depending on the particle sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this dissertation is the motivational influences on transfer in higher education and professional training contexts. To estimate these motivational influences, the dissertation includes seven individual studies that are structured in two parts. Part I, Dimensions, aims at identifying the dimensionality of motivation to transfer and its structural relations with training-related antecedents and outcomes. Part II, Boundary Conditions, aims at testing the predictive validity of motivation theories used in contemporary training research under different study conditions. Data in this dissertation was gathered from multi-item questionnaires, which were analyzed differently in Part I and Part II. Studies in Part I employed exploratory and confirmatory factor analysis, structural equation modeling, partial least squares (PLS) path modeling, and mediation analysis. Studies in Part II used artifact distribution meta-analysis, (nested) subgroup analysis, and weighted least squares (WLS) multiple regression. Results demonstrate that motivation to transfer can be conceptualized as a three-dimensional construct, including autonomous motivation to transfer, controlled motivation to transfer, and intention to transfer, given a theoretical framework informed by expectancy theory, self-determination theory, and the theory of planned behavior. Results also demonstrate that a range of boundary conditions moderates motivational influences on transfer. To test the predictive validity of expectancy theory, social cognitive theory, and the theory of goal orientations under different study settings, a total of 17 boundary conditions were meta-analyzed, including age; assessment criterion; assessment source; attendance policy; collaboration among trainees; computer support; instruction; instrument used to measure motivation; level of education; publication type; social training context; SS/SMC bias; study setting; survey modality; type of knowledge being trained; use of a control group; and work context. Together, the findings cumulated in this thesis support the basic premise that motivation is centrally important for transfer, but that motivational influences need to be understood from a more differentiated perspective than commonly found in the literature, in order to account for several dimensions and boundary conditions. The results of this dissertation across the seven individual studies are reflected in terms of their implications for theory development and their significance for training evaluation and the design of training environments. Limitations and directions to take in future research are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bioavailability of metals and their potential for environmental pollution depends not simply on total concentrations, but is to a great extent determined by their chemical form. Consequently, knowledge of aqueous metal species is essential in investigating potential metal toxicity and mobility. The overall aim of this thesis is, thus, to determine the species of major and trace elements and the size distribution among the different forms (e.g. ions, molecules and mineral particles) in selected metal-enriched Boreal river and estuarine systems by utilising filtration techniques and geochemical modelling. On the basis of the spatial physicochemical patterns found, the fractionation and complexation processes of elements (mainly related to input of humic matter and pH-change) were examined. Dissolved (<1 kDa), colloidal (1 kDa-0.45 μm) and particulate (>0.45 μm) size fractions of sulfate, organic carbon (OC) and 44 metals/metalloids were investigated in the extremely acidic Vörå River system and its estuary in W Finland, and in four river systems in SW Finland (Sirppujoki, Laajoki, Mynäjoki and Paimionjoki), largely affected by soil erosion and acid sulfate (AS) soils. In addition, geochemical modelling was used to predict the formation of free ions and complexes in these investigated waters. One of the most important findings of this study is that the very large amounts of metals known to be released from AS soils (including Al, Ca, Cd, Co, Cu, Mg, Mn, Na, Ni, Si, U and the lanthanoids) occur and can prevail mainly in toxic forms throughout acidic river systems; as free ions and/or sulfate-complexes. This has serious effects on the biota and especially dissolved Al is expected to have acute effects on fish and other organisms, but also other potentially toxic dissolved elements (e.g. Cd, Cu, Mn and Ni) can have fatal effects on the biota in these environments. In upstream areas that are generally relatively forested (higher pH and contents of OC) fewer bioavailable elements (including Al, Cu, Ni and U) may be found due to complexation with the more abundantly occurring colloidal OC. In the rivers in SW Finland total metal concentrations were relatively high, but most of the elements occurred largely in a colloidal or particulate form and even elements expected to be very soluble (Ca, K, Mg, Na and Sr) occurred to a large extent in colloidal form. According to geochemical modelling, these patterns may only to a limited extent be explained by in-stream metal complexation/adsorption. Instead there were strong indications that the high metal concentrations and dominant solid fractions were largely caused by erosion of metal bearing phyllosilicates. A strong influence of AS soils, known to exist in the catchment, could be clearly distinguished in the Sirppujoki River as it had very high concentrations of a metal sequence typical of AS soils in a dissolved form (Ba, Br, Ca, Cd, Co, K, Mg, Mn, Na, Ni, Rb and Sr). In the Paimionjoki River, metal concentrations (including Ba, Cs, Fe, Hf, Pb, Rb, Si, Th, Ti, Tl and V; not typical of AS soils in the area) were high, but it was found that the main cause of this was erosion of metal bearing phyllosilicates and thus these metals occurred dominantly in less toxic colloidal and particulate fractions. In the two nearby rivers (Laajoki and Mynäjoki) there was influence of AS soils, but it was largely masked by eroded phyllosilicates. Consequently, rivers draining clay plains sensitive to erosion, like those in SW Finland, have generally high background metal concentrations due to erosion. Thus, relying on only semi-dissolved (<0.45 μm) concentrations obtained in routine monitoring, or geochemical modelling based on such data, can lead to a great overestimation of the water toxicity in this environment. The potentially toxic elements that are of concern in AS soil areas will ultimately be precipitated in the recipient estuary or sea, where the acidic metalrich river water will gradually be diluted/neutralised with brackish seawater. Along such a rising pH gradient Al, Cu and U will precipitate first together with organic matter closest to the river mouth. Manganese is relatively persistent in solution and, thus, precipitates further down the estuary as Mn oxides together with elements such as Ba, Cd, Co, Cu and Ni. Iron oxides, on the contrary, are not important scavengers of metals in the estuary, they are predicted to be associated only with As and PO4.