124 resultados para small crystals
Resumo:
The objective of this research was to understand and describe what corpo-rate social and regional responsibility is in SMEs and define the meaning of these concepts to the community and region. Corporate social respon-sibility (CSR) creates a basis for regional responsibility. Regional respon-sibility is a new concept and this research examines it from SMEs’ view-point. This is a theoretical research and the aim is to create a theoretical framework of SMEs’ corporate social and regional responsibility. This framework supports the future research on the subject. The research results show that CSR of SMEs is practical, informal and dependent on the scarce resources of SMEs. CSR is a complex and deep concept and SMEs have their own way of interpreting it. It can be stated that CSR-practises in SMEs are closely connected to employment, envi-ronment, community and supply chain. The challenge is to find motivation to socially and regionally responsible behaviour in SMEs. Benefiting from responsible behaviour and the attitude of SME’s owner-manager are the key reasons for SMEs to involve in CSR and regional responsibility. The benefits of this involvement are for example improved image, reputation and market position. CSR can also be used in SMEs as risk management tool and in cost reduction. This study indicates also that creation of strate-gic partnerships, local government participation, a proper legal system and financial support are the basic issues which support CSR of SMEs. This research showed that regional responsibility of SMEs includes active participation in regional strategy processes, L&RED initiatives and regional philanthropy. For SMEs regional responsibility means good relationships with the community and other related stakeholders, involvement in L&RED initiatives and acting responsibly towards the operating environment. In SMEs’ case this means that they need to understand the benefits of this kind of involvement in order to take action and participate. As regional responsibility includes the relationships between firm and the community, it can be stated that regional responsibility extends CSR’s view of stakeholders and emphasises both, the regional stakeholders and public-private partnerships. Community engagement and responsible be-haviour towards community can be seen as a part of SMEs’ social and regional responsibility. This study indicates that social and regional re-sponsibility of SMEs have a significant influence on the community and region where they are located. Better local and regional relationships with regional and community actors are the positive impacts of social and re-gional responsibility of SMEs. Socially and regionally responsible behav-iour creates a more positive environment and deepens the involvement of SMEs to community and L&RED initiatives.
Resumo:
No 2/2008, sivu 8.
Resumo:
Nanoparticles offer adjustable and expandable reactive surface area compared to the more traditional solid phase forms utilized in bioaffinity assays due to the high surface to-volume ratio. The versatility of nanoparticles is further improved by the ability to incorporate various molecular complexes such as luminophores into the core. Nanoparticle labels composed of polystyrene, silica, inorganic crystals doped with high number of luminophores, preferably lanthanide(III) complexes, are employed in bioaffinity assays. Other label species such as semiconductor crystals (quantum dots) or colloidal gold clusters are also utilized. The surface derivatization of such particles with biomolecules is crucial for the applicability to bioaffinity assays. The effectiveness of a coating is reliant on the biomolecule and particle surface characteristics and the selected coupling technique. The most critical aspects of the particle labels in bioaffinity assays are their size-dependent features. For polystyrene, silica and inorganic phosphor particles, these include the kinetics, specific activity and colloidal stability. For quantum dots and gold colloids, the spectral properties are also dependent on particle size. This study reports the utilization of europium(III)-chelate-embedded nanoparticle labels in the development of bioaffinity assays. The experimental covers both the heterogeneous and homogeneous assay formats elucidating the wide applicability of the nanoparticles. It was revealed that the employment of europium(III) nanoparticles in heterogeneous assays for viral antigens, adenovirus hexon and hepatitis B surface antigen (HBsAg), resulted in sensitivity improvement of 10-1000 fold compared to the reference methods. This improvement was attributed to the extreme specific activity and enhanced monovalent affinity of the nanoparticles conjugates. The applicability of europium(III)-chelate-doped nanoparticles to homogeneous assay formats were proved in two completely different experimental settings; assays based on immunological recognition or proteolytic activity. It was shown that in addition to small molecule acceptors, particulate acceptors may also be employed due to the high specific activity of the particles promoting proximity-induced reabsorptive energy transfer in addition to non-radiative energy transfer. The principle of proteolytic activity assay relied on a novel dual-step FRET concept, wherein the streptavidin-derivatized europium(III)-chelate-doped nanoparticles were used as donors for peptide substrates modified with biotin and terminal europium emission compliant primary acceptor and a secondary quencher acceptor. The recorded sensitized emission was proportional to the enzyme activity, and the assay response to various inhibitor doses was in agreement with those found in literature showing the feasibility of the technique. Experiments regarding the impact of donor particle size on the extent of direct donor fluorescence and reabsorptive excitation interference in a FRET-based application was conducted with differently sized europium(III)-chelate-doped nanoparticles. It was shown that the size effect was minimal
Resumo:
The paper is focused on feasibility study and market review of small scale bioenergy heating plants in the Russian North-West region. The main focus is effective and competitive usage of low-grade wood for heating purposes in the region. As example of economical feasibility estimation it was chosen the project of reconstruction of small scale boiler plant in Leningrad region that Brofta Oy is planning to implement the nearest time. It includes calculation the payback time with and without interest, the estimation of probable investments, the evaluation of possible risks and research on the potential of small scale heating plants projects. Calculations show that the profitability of this kind of projects is high, but payback time is not very short, because of high level of initial investments. Though, the development of small scale bioenergy heating plants in the region is considered to be the best way to solve the problems of heat supply in small settlements using own biomass resources.
Resumo:
The present work is a part of the large project with purpose to investigate microstructure and electronic structure of natural topazes using NMR method. To reach this task we determined the relative contents of fluorine and hydrogen in crystals blue, colorless, wine and wine irradiated topazes. Then we determined the electric field gradients in site of aluminium atoms by NMR method, calculated EFG using ab initio method, and measured relaxation time dependence on heating temperature for blue, colorless, Swiss blue and sky blue topazes. Nuclear magnetic resonance (NMR) is an effective method to investigate the local structure in the crystal. The NMR study of the single crystal gives detailed information especially about the local crystal structure. As a result of this work we have received practical data, which is possible to use in future for making personal dosimetry and for preparation of mullite, which is widely used in traditional and advanced ceramic materials.
Resumo:
Emission trading with greenhouse gases and green certificates are part if the climate policy the main target of which is reduce greenhouse gas emissions. The carbon dioxide and fine particle emissions of energy production in Helsinki Metropolitan area are calculated in this study. The analysis is made mainly by district heating point of view and the changes of the district heating network are assessed. Carbon dioxide emissions would be a bit higher, if the district heating network is expanded, but then the fine particle emissions would be much lower. Carbon dioxide emissions are roughly 10 % higher, if the district heating network is expanded at same rate as it has in past five years in the year 2030. The expansion of district heating network would decrease the fine particle emissions about 40 %. The cost of the expansion is allocated to be reduction cost of the fine particle emissions, which is considerably higher than the traditional reduction methods costs. The possible new nuclear plant would reduce the emissions considerably and the costs of the nuclear plant would be relatively low comparing the other energy production methods.
Resumo:
Master thesis represents the literature overview of small wind energy. I have given the description of principles of work wind turbines, the description of the types of wind turbines, their advantages and disadvantages, the characteristics of small wind turbines, have shown how to count the payback period, have given an overview of currently market wind turbines and the future forecast.
Resumo:
In the last few years, the Ukrainian investment market has constantly shown strong performance and significant growth. This is primarily due to the investment attractiveness of Ukraine. From the perspective of investments in energy sector, Ukraine can be described as a country providing significant number of opportunities to multiply invested funds. But there are numbers of risks which hamper large investments. The work objective was to discover opportunities in small-scale hydropower and wind power sectors of Ukraine and more importantly to prove economic expediency of such investments. Thesis covers major of issues, concerning entering the Ukrainian power market as a foreign investor. It provides basic information about the structure of power market, the state of renewables sector in Ukraine, development of power sector in the regions, functioning of Wholesale Electricity Market, formation of electricity prices, possibilities for implementing joint Implementation mechanism, while the most attention, nevertheless, is concentrated on the opportunities in small-scale hydro and wind power sectors. Theoretical part of the study disclosed that Crimea peninsula has perfect wind conditions and could be a prospective area for wind project development. Investment analysis revealed that project profits will be excellent if green tariff for renewable energy is adopted. By the moment uncertainties about green law adoption bring additional risk to the projects and complicate any investment decision.
Resumo:
Cooling crystallization is one of the most important purification and separation techniques in the chemical and pharmaceutical industry. The product of the cooling crystallization process is always a suspension that contains both the mother liquor and the product crystals, and therefore the first process step following crystallization is usually solid-liquid separation. The properties of the produced crystals, such as their size and shape, can be affected by modifying the conditions during the crystallization process. The filtration characteristics of solid/liquid suspensions, on the other hand, are strongly influenced by the particle properties, as well as the properties of the liquid phase. It is thus obvious that the effect of the changes made to the crystallization parameters can also be seen in the course of the filtration process. Although the relationship between crystallization and filtration is widely recognized, the number of publications where these unit operations have been considered in the same context seems to be surprisingly small. This thesis explores the influence of different crystallization parameters in an unseeded batch cooling crystallization process on the external appearance of the product crystals and on the pressure filtration characteristics of the obtained product suspensions. Crystallization experiments are performed by crystallizing sulphathiazole (C9H9N3O2S2), which is a wellknown antibiotic agent, from different mixtures of water and n-propanol in an unseeded batch crystallizer. The different crystallization parameters that are studied are the composition of the solvent, the cooling rate during the crystallization experiments carried out by using a constant cooling rate throughout the whole batch, the cooling profile, as well as the mixing intensity during the batch. The obtained crystals are characterized by using an automated image analyzer and the crystals are separated from the solvent through constant pressure batch filtration experiments. Separation characteristics of the suspensions are described by means of average specific cake resistance and average filter cake porosity, and the compressibilities of the cakes are also determined. The results show that fairly large differences can be observed between the size and shape of the crystals, and it is also shown experimentally that the changes in the crystal size and shape have a direct impact on the pressure filtration characteristics of the crystal suspensions. The experimental results are utilized to create a procedure that can be used for estimating the filtration characteristics of solid-liquid suspensions according to the particle size and shape data obtained by image analysis. Multilinear partial least squares regression (N-PLS) models are created between the filtration parameters and the particle size and shape data, and the results presented in this thesis show that relatively obvious correlations can be detected with the obtained models.
Resumo:
This master’s thesis was done for Andritz Inc. Atlanta Georgia. The purpose of the thesis was to develop a new trolley for a small portal log yard crane. In the beginning of the thesis the basic principles of the systematic design processes have been described, along which the design work of the trolley has proceeded. The second literature part consists of the design and dimensioning of the welded steel structures under fatigue loading. The design work of the trolley consists of the engineering and the selection of the mechanical components and the design of the load carrying structure for the trolley. The realization of the steel structure of the trolley is based on the fatigue and static dimensioning. The fatigue dimensioning is grounded in the life expectations estimated for the trolley and the static dimensioning is based on the CMAA guidelines. The computer aided element method was utilized in the design of the steel structure. The effective notch method and the hot spot method were used in the fatigue calculations. The trolley structure was carried out by using the sheet metal parts in order to manufacture the structure as effective and low cost way as possible. The corner stone of the dimensioning of the trolley structure was the utilization of the open profiles made of welded or cold formed sheet metals, which provide better weldability, weld inspection, access for repairs and corrosion protection. As a last part of the thesis a new trolley traveling system was developed. The distribution of the wheel loads of the trolley bogies on the main girder was also studied, which led to an innovative suspension arrangement between the trolley leg and the bogie. The new bogie solution increases the service life of the main girder of the crane and improves the stability of the bogies. The outcome of the thesis is an excellent trolley structure from the weight and the service life point of view.
Resumo:
Succeeding in small board lot (0-20 tons) deliveries, is not always prosperous and failures as well as extra costs compared to standard costs arise. Failure deliveries from converting plants to customer locations tie a lot of unwanted and unexpected costs. Extra costs are handled as quality costs and more precise, internal failure costs. These costs revolve from unsuccessful truck payloads, redundant warehousing or unfavorable routing as examples. Quality costs are becoming more and more important factor in company’s financial decision making. Actual, realized truck payload correlates with the extra costs occurring, so filling the truck payload all get-out well is a key to lower the extra costs. Case company in this study is Corporation A, business segment Boards. Boards have outsourced half of their converting in order to gain better customer service via flexibility, lead time reductions and logistics efficiency improvements. Examination period of the study is first two quarters of year 2008 and deliveries examined are from converters to the customer locations. In Corporation A’s case, the total loss in failure deliveries is hundreds of thousands of Euros during the examination period. So, the logistics goal of getting the right product to the right place and right time for the least cost, does not completely realize.
Resumo:
Kirjallisuusarvostelu
Resumo:
The aim of this study is to examine how small and medium sized (SME) sawmills sustain their competitive advantage in the changing environment. Firstly, this study researches what changes affect SME sawmills’ competitiveness and what factors construct their competitive advantage. Secondly, this study examines how SME sawmills sustain their competitive advantage in the future and how agile and flexible they are. The theoretical part of this study represents the existing literature related to changes and competitive advantage in changing situations. The empirical part was executed as a qualitative research and it consists of thematic interviews with two SME sawmills. The results of the study indicate that several change factors affect the competitiveness of SME sawmills and therefore it is crucial to be alert on them. SME sawmills sustain their competitive advantage in the future by specialization and by being agile.