44 resultados para Three phase motor
Resumo:
The standard squirrel-cage induction machine has nearly reached its maximum efficiency. In order to further increase the energy efficiency of electrical machines, the use of permanent magnets in combination with the robust design and the line start capability of the induction machine is extensively investigated. Many experimental designs have been suggested in literature, but recently, these line-start permanent-magnet machines (LSPMMs) have become off-the-shelf products available in a power range up to 7.5 kW. The permanent magnet flux density is a function of the operating temperature. Consequently, the temperature will affect almost every electrical quantity of the machine, including current, torque, and efficiency. In this paper, the efficiency of an off-the-shelf 4-kW three-phase LSPMM is evaluated as a function of the temperature by both finite-element modeling and by practical measurements. In order to obtain stator, rotor, and permanent magnet temperatures, lumped thermal modeling is used.
Resumo:
JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.
Resumo:
Diplomityön tavoitteena on ollut kehittää sähköteknisten laitteiden kunnossapitoa sinkkitehtaalla. Kokonaisuus on laaja ja laitteita paljon. Suuri kunnossapitobudjetti koostuu pienistä palasista. Kehitystyötä on pyritty tekemään käytännönläheisin ja helposti toteutettavin menetelmin, joissa voidaan mahdollisimman paljon hyödyntää sinkkitehtaan oman sähkökunnossapidon resursseja. Tämä kehittää myös henkilöstön laitetuntemusta. Kunnossapito-ohjelma pyritään pitämään riittävän kevyenä ja edullisena toteuttaa. Teoreettisen pohdiskelun ja huoltomenetelmien suunnittelun jälkeen kunnossapidon käytännön toteuttamiseksi on rakennettu tehtaan ATK-järjestelmään työmääräimiä, jotka pohjautuvat työn aikana kirjoitettuihin työohjeisiin. Työn alussa on selvitetty sähköturvallisuusmääräysten asettamia vaatimuksia. Suurella osalla huoltotoimenpiteistä pyritään parantamaan sähköturvallisuutta. Muilta osin työ keskittyy sähkökeskustiloihin ja moottorikäyttöihin, osastokohtaisiin prosessilaitteisiin ja tehtaalla oleviin tärkeisiin, muttaprosessiin varsinaisesti kuulumattomiin laitteisiin. Niiden käsittelyn yhteydessä esitellään myös huollossa käytettäviä menetelmiä, mittauksia ja tarkastuksia.
Resumo:
In this thesis, the sorption and elastic properties of the cation-exchange resins were studied to explain the liquid chromatographic separation of carbohydrates. Na+, Ca2+ and La3+ form strong poly(styrene-co-divinylbenzene) (SCE) as well as Na+ and Ca2+ form weak acrylic (WCE) cation-exchange resins at different cross-link densities were treated within this work. The focus was on the effects of water-alcohol mixtures, mostly aqueous ethanol, and that of the carbohydrates. The carbohydrates examined were rhamnose, xylose, glucose, fructose, arabinose, sucrose, xylitol and sorbitol. In addition to linear chromatographic conditions, non-linear conditions more typical for industrial applications were studied. Both experimental and modeling aspectswere covered. The aqueous alcohol sorption on the cation-exchangers were experimentally determined and theoretically calculated. The sorption model includes elastic parameters, which were obtained from sorption data combined with elasticity measurements. As hydrophilic materials cation-exchangers are water selective and shrink when an organic solvent is added. At a certain deswelling degree the elastic resins go through glass transition and become as glass-like material. Theincreasing cross-link level and the valence of the counterion decrease the sorption of solvent components in the water-rich solutions. The cross-linkage or thecounterions have less effect on the water selectivity than the resin type or the used alcohol. The amount of water sorbed is higher in the WCE resin and, moreover, the WCE resin is more water selective than the corresponding SCE resin. Theincreased aliphatic part of lower alcohols tend to increase the water selectivity, i.e. the resins are more water selective in 2-propanol than in ethanol solutions. Both the sorption behavior of carbohydrates and the sorption differences between carbohydrates are considerably affected by the eluent composition and theresin characteristics. The carbohydrate sorption was experimentally examined and modeled. In all cases, sorption and moreover the separation of carbohydrates are dominated by three phenomena: partition, ligand exchange and size exclusion. The sorption of hydrophilic carbohydrates increases when alcohol is added into the eluent or when carbohydrate is able to form coordination complexes with the counterions, especially with multivalent counterions. Decreasing polarity of the eluent enhances the complex stability. Size exclusion effect is more prominent when the resin becomes tighter or carbohydrate size increases. On the other hand,the elution volumes between different sized carbohydrates decreases with the decreasing polarity of the eluent. The chromatographic separation of carbohydrateswas modeled, using rhamnose and xylose as target molecules. The thermodynamic sorption model was successfully implemented in the rate-based column model. The experimental chromatographic data were fitted by using only one adjustable parameter. In addition to the fitted data also simulated data were generated and utilized in explaining the effect of the eluent composition and of the resin characteristics on the carbohydrate separation.
Resumo:
A method for the analysis of high-speed solid-rotor induction motors in presented. The analysis is based on a new combination of the three dimensional linear method and the transfer matrix method. Both saturation and finite length effects are taken into account. The active region of the solid rotor is divided into saturated and unsaturated parts. The time dependence is assumed to be sinusoidal and phasor quantities are used in the solution. The method is applied to the calculation of smooth solid rotors manufactured of different materials. Six rotor materials are tested: three construction steels, pure iron, a cobaltiron alloy and an aluminium alloy. The results obtained by the method agree fairly well with the measurement quantities.
Resumo:
Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.
Resumo:
Boiling two-phase flow and the equations governing the motion of fluid in two-phase flows are discussed in this thesis. Disposition of the governing equations in three-dimensional complex geometries is considered from the perspective of the porous medium concept. The equations governing motion in two-phase flows were formulated, discretized and implemented in a subroutine for pressure-velocity solution utilizing the SIMPLE algorithm modified for two-phase flow. The subroutine was included in PORFLO, which is a three-dimensional 5-equation porous media model developed at VTT by Jaakko Miettinen. The development of two-phase flow and the resulting void fraction distribution was predicted in a geometry resembling a section of BWR fuel bundle in a couple of test cases using PORFLO.
Resumo:
Pumppukäytöt vastaavat noin neljännestä Euroopan alueen sähkömoottoreissa kuluvasta energiasta. Energian hinnan nousun vuoksi energian säästäminen ja energiatehokkuus ovat nousseet tärkeään asemaan paljon energiaa kuluttavassa teollisuudessa. Pumppukäyttöjen hyötysuhteen parantaminen on noussut olennaiseen osaan paperi- ja kartonkiteollisuuden energiatehokkuustarkasteluissa. Tässä työssä tarkastellaan kartonkikoneen pumppukäyttöjen toiminnan energiatehokkuutta moottorin virtamittausten perusteella. Analyysi perustuu moottorin akselitehon määrittämiseen ja sen perusteella tehtävään pumpun toimintapisteen laskentaan. Työssä esitellään käytetyt estimointimenetelmät ja niillä saadut tulokset kartonkikoneen pumppukäytöille. Lisäksi työssä arvioidaan kolmen yksittäisen pumppukäytön energiankulutuksen säästöpotentiaalia. Työssä käytettyä menetelmää voidaan käyttää sekä vakio- että vaihtonopeuspumppukäyttöjen toiminnan ja hyötysuhteen analysointiin.
Resumo:
This dissertation is based on 5 articles which deal with reaction mechanisms of the following selected industrially important organic reactions: 1. dehydrocyclization of n-butylbenzene to produce naphthalene 2. dehydrocyclization of 1-(p-tolyl)-2-methylbutane (MB) to produce 2,6-dimethylnaphthalene 3. esterification of neopentyl glycol (NPG) with different carboxylic acids to produce monoesters 4. skeletal isomerization of 1-pentene to produce 2-methyl-1-butene and 2-methyl-2-butene The results of initial- and integral-rate experiments of n-butylbenzene dehydrocyclization over selfmade chromia/alumina catalyst were applied when investigating reaction 2. Reaction 2 was performed using commercial chromia/alumina of different acidity, platina on silica and vanadium/calcium/alumina as catalysts. On all catalysts used for the dehydrocyclization, major reactions were fragmentation of MB and 1-(p-tolyl)-2-methylbutenes (MBes), dehydrogenation of MB, double bond transfer, hydrogenation and 1,6-cyclization of MBes. Minor reactions were 1,5-cyclization of MBes and methyl group fragmentation of 1,6- cyclization products. Esterification reactions of NPG were performed using three different carboxylic acids: propionic, isobutyric and 2-ethylhexanoic acid. Commercial heterogeneous gellular (Dowex 50WX2), macroreticular (Amberlyst 15) type resins and homogeneous para-toluene sulfonic acid were used as catalysts. At first NPG reacted with carboxylic acids to form corresponding monoester and water. Then monoester esterified with carboxylic acid to form corresponding diester. In disproportionation reaction two monoester molecules formed NPG and corresponding diester. All these three reactions can attain equilibrium. Concerning esterification, water was removed from the reactor in order to prevent backward reaction. Skeletal isomerization experiments of 1-pentene were performed over HZSM-22 catalyst. Isomerization reactions of three different kind were detected: double bond, cis-trans and skeletal isomerization. Minor side reaction were dimerization and fragmentation. Monomolecular and bimolecular reaction mechanisms for skeletal isomerization explained experimental results almost equally well. Pseudohomogeneous kinetic parameters of reactions 1 and 2 were estimated by usual least squares fitting. Concerning reactions 3 and 4 kinetic parameters were estimated by the leastsquares method, but also the possible cross-correlation and identifiability of parameters were determined using Markov chain Monte Carlo (MCMC) method. Finally using MCMC method, the estimation of model parameters and predictions were performed according to the Bayesian paradigm. According to the fitting results suggested reaction mechanisms explained experimental results rather well. When the possible cross-correlation and identifiability of parameters (Reactions 3 and 4) were determined using MCMC method, the parameters identified well, and no pathological cross-correlation could be seen between any parameter pair.
Resumo:
Implementing an enterprise resource planning (ERP) system often means a major change to an organization and involves significant risks. It is typical that many of the ERP system implementations fail resulting in tremendous damage to the business. Moreover, running normal business operations during an ERP system implementation is far more complicated than normally. This thesis focuses on how an organization should manage the ERP system implementation process in order to maintain supply performance during the implementation phase. The theoretical framework in this thesis focuses on ERP system implementations with a critical success factor approach. Critical success factors can be divided into strategic and tactical level success factors. By considering these critical success factors, ERP system implementation project’s timeline and best practices of an ERP implementation, a critical success factor based ERP system implementation management framework is presented. The framework can be used as a theoretical framework when the goal is to avoid ERP system implementation phase issues that are driven by the ERP system implementation project and that may decrease organization’s supply performance. This thesis is a case study that was written on an assignment to a confectionary company Cloetta Suomi Oy. In order to collect data, interviews of the case company personnel were conducted. In addition, several other data collection methods were used throughout the research process. These data collection methods include examination of presentations and archival records as well as direct observations in case company meetings and in various work duties. The results of this thesis indicate that there are several factors that may decrease organization’s supply performance during the ERP system implementation. These issues are categorized under external and internal issues and further into six risk drivers that are suppliers, customers, products, staff, information systems and other projects. After the description and categorization of each issue, the thesis focuses on finding solutions on how to avoid or mitigate the impact of these issues on the organization’s supply performance. This examination leads to several operational activities that are also practical to business practitioners. It is also stated that a successful ERP system implementation that also causes minimal disturbance to organization’s supply performance during the ERP system implementation, is achieved by considering three levels of actions.
Resumo:
The evolution of our society is impossible without a constant progress in life-important areas such as chemical engineering and technology. Innovation, creativity and technology are three main components driving the progress of chemistry further towards a sustainable society. Biomass, being an attractive renewable feedstock for production of fine chemicals, energy-rich materials and even transportation fuels, captures progressively new positions in the area of chemical technology. Knowledge of heterogeneous catalysis and chemical technology applied to transformation of biomass-derived substances will open doors for a sustainable economy and facilitates the discovery of novel environmentally-benign processes which probably will replace existing technologies in the era of biorefinary. Aqueous-phase reforming (APR) is regarded as a promising technology for production of hydrogen and liquids fuels from biomass-derived substances such as C3-C6 polyols. In the present work, aqueous-phase reforming of glycerol, xylitol and sorbitol was investigated in the presence of supported Pt catalysts. The catalysts were deposited on different support materials, including Al2O3, TiO2 and carbons. Catalytic measurements were performed in a laboratory-scale continuous fixedbed reactor. An advanced analytical approach was developed in order to identify reaction products and reaction intermediates in the APR of polyols. The influence of the substrate structure on the product formation and selectivity in the APR reaction was also investigated, showing that the yields of the desired products varied depending on the substrate chain length. Additionally, the influence of bioethanol additive in the APR of glycerol and sorbitol was studied. A reaction network was advanced explaining the formation of products and key intermediates. The structure sensitivity in the aqueous-phase reforming reaction was demonstrated using a series of platinum catalysts supported on carbon with different Pt cluster sizes in the continuous fixed-bed reactor. Furthermore, a correlation between texture physico-chemical properties of the catalysts and catalytic data was established. The effect of the second metal (Re, Cu) addition to Pt catalysts was investigated in the APR of xylitol showing a superior hydrocarbon formation on PtRe bimetallic catalysts compared to monometallic Pt. On the basis of the experimental data obtained, mathematical modeling of the reaction kinetics was performed. The developed model was proven to successfully describe experimental data on APR of sorbitol with good accuracy.
Resumo:
The objective of this research is to observe the state of customer value management in Outotec Oyj, determine the key development areas and develop a phase model with which to guide the development of a customer value based sales tool. The study was conducted with a constructive research approach with the focus of identifying a problem and developing a solution for the problem. As a basis for the study, the current literature involving customer value assessment and solution and customer value selling was studied. The data was collected by conducting 16 interviews in two rounds within the company and it was analyzed by coding openly. First, seven important development areas were identified, out of which the most critical were “Customer value mindset inside the company” and “Coordination of customer value management activities”. Utilizing these seven areas three functionality requirements, “Preparation”, “Outotec’s value creation and communication” and “Documentation” and three development requirements for a customer value sales tool were identified. The study concluded with the formulation of a phase model for building a customer value based sales tool. The model included five steps that were defined as 1) Enable customer value utilization, 2) Connect with the customer, 3) Create customer value, 4) Define tool to facilitate value selling and 5) Develop sales tool. Further practical activities were also recommended as a guide for executing the phase model.
Resumo:
Hissiteollisuudessa nostokoneistoina käytettyjen sähkömoottoreiden laatuvaatimukset ovat tiuken-tuneet viime vuosina. Erityisesti koneistojen tuottama ääni ja mekaaninen värähtely ovat olleet jat-kuvasti tiukentuneen tarkastelun alaisena. Hissikoriin ja hissiä ympäröiviin rakenteisiin välittyvästä värähtelystä johtuva ääni on yksi hissin laatuvaikutelmaan merkittävimmin vaikuttavia tekijöitä. Nostokoneisto on yksi tärkeimmistä äänen ja värähtelyn lähteistä hissijärjestelmässä. Koneiston suunnittelulla edellä mainittuja tekijöitä voidaan minimoida. Sähkökoneiden suunnittelussa finiit-tielementtimenetelmien (FEM) käyttö on vakiintunut haastavimmissa sovelluksissa. Kone Oyj:llä nostokoneistoina käytetään aksiaalivuokestomagneettitahtikoneita (AFPMSM), joiden FEM simu-lointiin käytetään yleisesti kolmea eri tapaa. Kukin näistä vaihtoehdoista pitää sisällään omat hyö-tynsä, että haittansa. Suunnittelun kannalta tärkeää on oikean menetelmän valinta ai-ka/informatiivisuus suhteen maksimoimiseksi. Erittäin tärkeää on myös saatujen tulosten oikeelli-suus. Tämän diplomityön tavoite on kehittää järjestelmä, jonka avulla AFPMS-koneen voimia voidaan mitata yksityiskohtaisella tasolla. Järjestelmän avulla voidaan tarkastella käytössä olevien FE-menetelmien tulosten oikeellisuutta sekä äänen että värähtelyn syntymekanismeja. Järjestelmän tarkoitus on myös syventää Kone Oyj tietotaitoa AFPMS-koneiden toiminnasta. Tässä työssä esitellään AFPMS-koneen epäideaalisuuksia, jotka voivat vaikuttaa mittajärjestelmän suunnitteluun. Myös koneen epäideaalisuuksiin lukeutuvaa ääntä on tarkasteltu tässä työssä. Jotta työn tavoitteiden mukaista FE-menetelmien vertailua ja tulosten oikeellisuuden tarkastelua voitai-siin tehdä, myös yleisimpiä AFPMS-koneen FE-menetelmiä tarkastellaan. Työn tuloksena on mittajärjestelmän suunnitelma, jonka avulla voidaan toteuttaa kuuden vapausas-teen voimamittaus jokaiselle koneistomagneetille alle 1N resoluutiolla. Suunnitellun järjestelmän toimivuutta on tarkasteltu FE-menetelmiä käyttäen ja järjestelmässä käytettävän voima-anturin ky-vykkyyttä on todennettu referenssimittauksin. Suunniteltu mittajärjestelmä mahdollistaa sähkömoottorin useiden eri epäideaalisuuksien tarkaste-lun yksityiskohtaisella tasolla. Mittausajatuksen soveltaminen myös muiden koneiden tutkimiseen tarjoaa mahdollisuuksia jatkotutkimuksille.
Resumo:
In this bachelor’s thesis are examined the benefits of current distortion detection device application in customer premises low voltage networks. The purpose of this study was to find out if there are benefits for measuring current distortion in low-voltage residential networks. Concluding into who can benefit from measuring the power quality. The research focuses on benefits based on the standardization in Europe and United States of America. In this research, were also given examples of appliances in which current distortion detection device could be used. Along with possible illustration of user interface for the device. The research was conducted as an analysis of the benefits of current distortion detection device in residential low voltage networks. The research was based on literature review. The study was divided to three sections. The first explain the reasons for benefitting from usage of the device and the second portrays the low-cost device, which could detect one-phase current distortion, in theory. The last section discuss of the benefits of usage of current distortion detection device while focusing on the beneficiaries. Based on the result of this research, there are benefits from usage to the current distortion detection device. The main benefitting party of the current distortion detection device was found to be manufactures, as they are held responsible of limiting the current distortion on behalf of consumers. Manufactures could adjust equipment to respond better to the distortion by having access to on-going current distortion in network. The other benefitting party are system operators, who would better locate distortion issues in low-voltage residential network to start prevention of long-term problems caused by current distortion early on.