29 resultados para risk-based modeling
Resumo:
In recent decades, business intelligence (BI) has gained momentum in real-world practice. At the same time, business intelligence has evolved as an important research subject of Information Systems (IS) within the decision support domain. Today’s growing competitive pressure in business has led to increased needs for real-time analytics, i.e., so called real-time BI or operational BI. This is especially true with respect to the electricity production, transmission, distribution, and retail business since the law of physics determines that electricity as a commodity is nearly impossible to be stored economically, and therefore demand-supply needs to be constantly in balance. The current power sector is subject to complex changes, innovation opportunities, and technical and regulatory constraints. These range from low carbon transition, renewable energy sources (RES) development, market design to new technologies (e.g., smart metering, smart grids, electric vehicles, etc.), and new independent power producers (e.g., commercial buildings or households with rooftop solar panel installments, a.k.a. Distributed Generation). Among them, the ongoing deployment of Advanced Metering Infrastructure (AMI) has profound impacts on the electricity retail market. From the view point of BI research, the AMI is enabling real-time or near real-time analytics in the electricity retail business. Following Design Science Research (DSR) paradigm in the IS field, this research presents four aspects of BI for efficient pricing in a competitive electricity retail market: (i) visual data-mining based descriptive analytics, namely electricity consumption profiling, for pricing decision-making support; (ii) real-time BI enterprise architecture for enhancing management’s capacity on real-time decision-making; (iii) prescriptive analytics through agent-based modeling for price-responsive demand simulation; (iv) visual data-mining application for electricity distribution benchmarking. Even though this study is from the perspective of the European electricity industry, particularly focused on Finland and Estonia, the BI approaches investigated can: (i) provide managerial implications to support the utility’s pricing decision-making; (ii) add empirical knowledge to the landscape of BI research; (iii) be transferred to a wide body of practice in the power sector and BI research community.
Resumo:
Tutkimuksen tarkoituksena oli löytää menetelmä, jolla löydetään tuotannon kannalta kriittiset laitteet. Vertailu suoritettiin suomalaisen PSK 6800-standardin ja saksalaisen DIN standardin mukainen BASF:n laatiman Risk-based Maintenance concept:n välillä. Tutkimuksessa kehitettiin tehtaan tarpeisiin soveltuva kriittisyysanalyysi. Tarkoituksena oli kehittää tehtaalle ominaisilla tunnusluvuilla soveltuva analysointimenetelmä. Tehtaan kunnossapidolta kerätyn pohjatiedon avulla laadittiin kriittisyysanalyysi. PSK-6800 standardin pohjalle kehitetty kriittisyysanalyysi testattiin ja vertailtiin BASF:n mallin mukaisesti kehitetyn kriittisyysanalyysin tuloksiin. Analysointi suoritetaan tuotantoprosessin alkupään laitteistolle. Kahden kriittisyysanalyysin tulokset ovat yhtenevät. Tuotantolaitos voi valita kahdesta kriittisyysanalyysistä tarpeisiinsa sopivan analysointi menetelmän.
Resumo:
The Finnish legislation requires for a safe and secure learning environment. However, the comprehensive, risk based safety and security management (SSM) and the management commitment in the implementation and development of the SSM are not mentioned in the legislation. Multiple institutions, operators and researchers have studied and developed safety and security in educational institutions over the past decade. Typically the approach has been fragmented and without bringing up the importance of the comprehensive SSM. The development needs of the safety and security operations in universities have been studied. However, in universities of applied sciences (UASs) and in elementary schools (ESs), the performance level, strengths and weaknesses of the comprehensive SSM have not been studied. The objective of this study was to develop the comprehensive, risk based SSM of educational institutions by developing the new Asteri consultative auditing process and study its effects on auditees. Furthermore, the performance level in the comprehensive SSM in UASs and ESs were studied using Asteri and the TUTOR model developed by the Keski-Uusimaa Department for Rescue Services. In addition, strengths, development needs and differences were identified. In total, 76 educational institutions were audited between the years 2011 and 2014. The study is based on logical empiricism, and an observational applied research design was used. Auditing, observation and an electronic survey were used for data collection. Statistical analysis was used to analyze the collected information. In addition, thematic analysis was used to analyze the development areas of the organizations mentioned by the respondents in the survey. As one of the main contributions, this research presents the new Asteri consultative auditing process. Organizations with low performance levels on the audited subject benefit the most from the Asteri consultative auditing process. Asteri may be usable in many different types of audits, not only in SSM audits. As a new result, this study provides new knowledge on attitudes related to auditing. According to the research findings, auditing may generate negative attitudes and the auditor should take them into account when planning and preparing for audits. Negative attitudes can be compensated by producing added value, objectivity and positivity for the audit and, thus, improve the positive effects of auditing on knowledge and skills. Moreover, as the results of this study shows, auditing safety and security issues do not increase feelings of insecurity, but rather increase feelings of safety and security when using the new Asteri consultative auditing process with the TUTOR model. The results showed that the SSM in the audited UASs was statistically significantly more advanced than that in the audited ESs. However, there is still room for improvement in the ESs and the UASs as the approach to the SSM was fragmented. It can be assumed that the majority of Finnish UASs and ESs do not likely meet the basic level of the comprehensive, risk based the SSM.
Resumo:
The purpose of this Master´s Thesis is to develop asset management and its practices in case company. District heating and cooling systems operated by case company around Finland, Sweden, Poland and the Baltics form an enormous-sized asset base where some parts are starting to reach their end of life-cycles. Large-sized asset renewal actions are under discussion and maintenance spending is increasing. Financially justified decisions in changing business environment are needed. Asset management is one of the most important concepts for production organization which operates with capital-intensive production assets. Organizations profitability is highly dependent on assets´ performance. Such assets, like district heating and cooling systems, should be utilized as efficiently as possible within their life-cycles but also maintained and renewed optimally. In this qualitative thesis, empirical interview study was conducted to describe the current situation on how the assets are managed in the case company and to examine the readiness to implement a new, risk-based solution. Asset management revealed to be a very well-known concept. From proposed risk-based asset management point of view, several key observations were made. It was seen as a suitable solution, but further development will be needed. Based on the need and findings, several key processes and frameworks were created and also tested with a case study. Assets` condition monitoring should be improved, which would have a positive impact on event probability assessment. Risk acceptance is also a thing to be discussed further. When the evaluation becomes fluent in single investment cases, portfolio-level expansion should be considered and started. As a result, thesis proposes a solution how risk-based asset management could be performed practically in a capital-intensive case company in order to optimize the maintenance spending in a long run. Created practical framework is made universal: similar principles can be applied into multiple cases in case company but also in other energy companies. Risk-based asset management`s benefits could be utilized best in portfolio-level optimization where the capital would be invested to the most important objects from total risk point of view. Eventually, such approach would allow case company to optimize capital spending in a situation where funds are not adequate to cover all the mandatory needs and prioritization between the investment alternatives will truly be needed.
Resumo:
The purpose of this thesis is to focus on credit risk estimation. Different credit risk estimation methods and characteristics of credit risk are discussed. The study is twofold, including an interview of a credit risk specialist and a quantitative section. Quantitative section applies the KMV model to estimate credit risk of 12 sample companies from three different industries: automobile, banking and financial sector and technology. Timeframe of the estimation is one year. On the basis of the KMV model and the interview, implications for analysis of credit risk are discussed. The KMV model yields consistent results with the existing credit ratings. However, banking and financial sector requires calibration of the model due to high leverage of the industry. Credit risk is considerably driven by leverage, value and volatility of assets. Credit risk models produce useful information on credit worthiness of a business. Yet, quantitative models often require qualitative support in the decision-making situation.
Resumo:
Static process simulation has traditionally been used to model complex processes for various purposes. However, the use of static processsimulators for the preparation of holistic examinations aiming at improving profit-making capability requires a lot of work because the production of results requires the assessment of the applicability of detailed data which may be irrelevant to the objective. The relevant data for the total assessment gets buried byirrelevant data. Furthermore, the models do not include an examination of the maintenance or risk management, and economic examination is often an extra property added to them which can be performed with a spreadsheet program. A process model applicable to holistic economic examinations has been developed in this work. The model is based on the life cycle profit philosophy developed by Hagberg and Henriksson in 1996. The construction of the model has utilized life cycle assessment and life cycle costing methodologies with a view to developing, above all, a model which would be applicable to the economic examinations of complete wholes and which would require the need for information focusing on aspects essential to the objectives. Life cycle assessment and costing differ from each other in terms of the modeling principles, but the features of bothmethodologies can be used in the development of economic process modeling. Methods applicable to the modeling of complex processes can be examined from the viewpoint of life cycle methodologies, because they involve the collection and management of large corpuses of information and the production of information for the needs of decision-makers as well. The results of the study shows that on the basis of the principles of life cycle modeling, a process model can be created which may be used to produce holistic efficiency examinations on the profit-making capability of the production line, with fewer resources thanwith traditional methods. The calculations of the model are based to the maximum extent on the information system of the factory, which means that the accuracyof the results can be improved by developing information systems so that they can provide the best information for this kind of examinations.
Resumo:
The study of price risk management concerning high grade steel alloys and their components was conducted. This study was focused in metal commodities, of which nickel, chrome and molybdenum were in a central role. Also possible hedging instruments and strategies for referred metals were studied. In the literature part main themes are price formation of Ni, Cr and Mo, the functioning of metal exchanges and main hedging instruments for metal commodities. This section also covers how micro and macro variables may affect metal prices from the viewpoint of short as well as longer time period. The experimental part consists of three sections. In the first part, multiple regression model with seven explanatory variables was constructed to describe price behavior of nickel. Results were compared after this with information created with comparable simple regression model. Additionally, long time mean price reversion of nickel was studied. In the second part, theoretical price of CF8M alloy was studied by using nickel, ferro-chrome and ferro-molybdenum as explanatory variables. In the last section, cross hedging possibilities for illiquid FeCr -metal was studied with five LME futures. Also this section covers new information concerning possible forthcoming molybdenum future contracts as well. The results of this study confirm, that linear regression models which are based on the assumption of market rationality, are not able to reliably describe price development of metals at issue. Models fulfilling assumptions for linear regression may though include useful information of statistical significant variables which have effect on metal prices. According to the experimental part, short futures were found to incorporate the most accurate information concerning the price movements in the future. However, not even 3M futures were able to predict turning point in the market before the faced slump. Cross hedging seemed to be very doubtful risk management strategy for illiquid metals, because correlations coefficients were found to be very sensitive for the chosen time span.
Resumo:
The purpose of this study is to view credit risk from the financier’s point of view in a theoretical framework. Results and aspects of the previous studies regarding measuring credit risk with accounting based scoring models are also examined. The theoretical framework and previous studies are then used to support the empirical analysis which aims to develop a credit risk measure for a bank’s internal use or a risk management tool for a company to indicate its credit risk to the financier. The study covers a sample of Finnish companies from 12 different industries and four different company categories and employs their accounting information from 2004 to 2008. The empirical analysis consists of six stage methodology process which uses measures of profitability, liquidity, capital structure and cash flow to determine financier’s credit risk, define five significant risk classes and produce risk classification model. The study is confidential until 15.10.2012.
Resumo:
Early identification of beginning readers at risk of developing reading and writing difficulties plays an important role in the prevention and provision of appropriate intervention. In Tanzania, as in other countries, there are children in schools who are at risk of developing reading and writing difficulties. Many of these children complete school without being identified and without proper and relevant support. The main language in Tanzania is Kiswahili, a transparent language. Contextually relevant, reliable and valid instruments of identification are needed in Tanzanian schools. This study aimed at the construction and validation of a group-based screening instrument in the Kiswahili language for identifying beginning readers at risk of reading and writing difficulties. In studying the function of the test there was special interest in analyzing the explanatory power of certain contextual factors related to the home and school. Halfway through grade one, 337 children from four purposively selected primary schools in Morogoro municipality were screened with a group test consisting of 7 subscales measuring phonological awareness, word and letter knowledge and spelling. A questionnaire about background factors and the home and school environments related to literacy was also used. The schools were chosen based on performance status (i.e. high, good, average and low performing schools) in order to include variation. For validation, 64 children were chosen from the original sample to take an individual test measuring nonsense word reading, word reading, actual text reading, one-minute reading and writing. School marks from grade one and a follow-up test half way through grade two were also used for validation. The correlations between the results from the group test and the three measures used for validation were very high (.83-.95). Content validity of the group test was established by using items drawn from authorized text books for reading in grade one. Construct validity was analyzed through item analysis and principal component analysis. The difficulty level of most items in both the group test and the follow-up test was good. The items also discriminated well. Principal component analysis revealed one powerful latent dimension (initial literacy factor), accounting for 93% of the variance. This implies that it could be possible to use any set of the subtests of the group test for screening and prediction. The K-Means cluster analysis revealed four clusters: at-risk children, strugglers, readers and good readers. The main concern in this study was with the groups of at-risk children (24%) and strugglers (22%), who need the most assistance. The predictive validity of the group test was analyzed by correlating the measures from the two school years and by cross tabulating grade one and grade two clusters. All the correlations were positive and very high, and 94% of the at-risk children in grade two were already identified in the group test in grade one. The explanatory power of some of the home and school factors was very strong. The number of books at home accounted for 38% of the variance in reading and writing ability measured by the group test. Parents´ reading ability and the support children received at home for schoolwork were also influential factors. Among the studied school factors school attendance had the strongest explanatory power, accounting for 21% of the variance in reading and writing ability. Having been in nursery school was also of importance. Based on the findings in the study a short version of the group test was created. It is suggested for use in the screening processes in grade one aiming at identifying children at risk of reading and writing difficulties in the Tanzanian context. Suggestions for further research as well as for actions for improving the literacy skills of Tanzanian children are presented.
Resumo:
In this doctoral thesis, methods to estimate the expected power cycling life of power semiconductor modules based on chip temperature modeling are developed. Frequency converters operate under dynamic loads in most electric drives. The varying loads cause thermal expansion and contraction, which stresses the internal boundaries between the material layers in the power module. Eventually, the stress wears out the semiconductor modules. The wear-out cannot be detected by traditional temperature or current measurements inside the frequency converter. Therefore, it is important to develop a method to predict the end of the converter lifetime. The thesis concentrates on power-cycling-related failures of insulated gate bipolar transistors. Two types of power modules are discussed: a direct bonded copper (DBC) sandwich structure with and without a baseplate. Most common failure mechanisms are reviewed, and methods to improve the power cycling lifetime of the power modules are presented. Power cycling curves are determined for a module with a lead-free solder by accelerated power cycling tests. A lifetime model is selected and the parameters are updated based on the power cycling test results. According to the measurements, the factor of improvement in the power cycling lifetime of modern IGBT power modules is greater than 10 during the last decade. Also, it is noticed that a 10 C increase in the chip temperature cycle amplitude decreases the lifetime by 40%. A thermal model for the chip temperature estimation is developed. The model is based on power loss estimation of the chip from the output current of the frequency converter. The model is verified with a purpose-built test equipment, which allows simultaneous measurement and simulation of the chip temperature with an arbitrary load waveform. The measurement system is shown to be convenient for studying the thermal behavior of the chip. It is found that the thermal model has a 5 C accuracy in the temperature estimation. The temperature cycles that the power semiconductor chip has experienced are counted by the rainflow algorithm. The counted cycles are compared with the experimentally verified power cycling curves to estimate the life consumption based on the mission profile of the drive. The methods are validated by the lifetime estimation of a power module in a direct-driven wind turbine. The estimated lifetime of the IGBT power module in a direct-driven wind turbine is 15 000 years, if the turbine is located in south-eastern Finland.
Resumo:
Longitudinal surveys are increasingly used to collect event history data on person-specific processes such as transitions between labour market states. Surveybased event history data pose a number of challenges for statistical analysis. These challenges include survey errors due to sampling, non-response, attrition and measurement. This study deals with non-response, attrition and measurement errors in event history data and the bias caused by them in event history analysis. The study also discusses some choices faced by a researcher using longitudinal survey data for event history analysis and demonstrates their effects. These choices include, whether a design-based or a model-based approach is taken, which subset of data to use and, if a design-based approach is taken, which weights to use. The study takes advantage of the possibility to use combined longitudinal survey register data. The Finnish subset of European Community Household Panel (FI ECHP) survey for waves 1–5 were linked at person-level with longitudinal register data. Unemployment spells were used as study variables of interest. Lastly, a simulation study was conducted in order to assess the statistical properties of the Inverse Probability of Censoring Weighting (IPCW) method in a survey data context. The study shows how combined longitudinal survey register data can be used to analyse and compare the non-response and attrition processes, test the missingness mechanism type and estimate the size of bias due to non-response and attrition. In our empirical analysis, initial non-response turned out to be a more important source of bias than attrition. Reported unemployment spells were subject to seam effects, omissions, and, to a lesser extent, overreporting. The use of proxy interviews tended to cause spell omissions. An often-ignored phenomenon classification error in reported spell outcomes, was also found in the data. Neither the Missing At Random (MAR) assumption about non-response and attrition mechanisms, nor the classical assumptions about measurement errors, turned out to be valid. Both measurement errors in spell durations and spell outcomes were found to cause bias in estimates from event history models. Low measurement accuracy affected the estimates of baseline hazard most. The design-based estimates based on data from respondents to all waves of interest and weighted by the last wave weights displayed the largest bias. Using all the available data, including the spells by attriters until the time of attrition, helped to reduce attrition bias. Lastly, the simulation study showed that the IPCW correction to design weights reduces bias due to dependent censoring in design-based Kaplan-Meier and Cox proportional hazard model estimators. The study discusses implications of the results for survey organisations collecting event history data, researchers using surveys for event history analysis, and researchers who develop methods to correct for non-sampling biases in event history data.
Resumo:
Malaria continues to infect millions and kill hundreds of thousands of people worldwide each year, despite over a century of research and attempts to control and eliminate this infectious disease. Challenges such as the development and spread of drug resistant malaria parasites, insecticide resistance to mosquitoes, climate change, the presence of individuals with subpatent malaria infections which normally are asymptomatic and behavioral plasticity in the mosquito hinder the prospects of malaria control and elimination. In this thesis, mathematical models of malaria transmission and control that address the role of drug resistance, immunity, iron supplementation and anemia, immigration and visitation, and the presence of asymptomatic carriers in malaria transmission are developed. A within-host mathematical model of severe Plasmodium falciparum malaria is also developed. First, a deterministic mathematical model for transmission of antimalarial drug resistance parasites with superinfection is developed and analyzed. The possibility of increase in the risk of superinfection due to iron supplementation and fortification in malaria endemic areas is discussed. The model results calls upon stakeholders to weigh the pros and cons of iron supplementation to individuals living in malaria endemic regions. Second, a deterministic model of transmission of drug resistant malaria parasites, including the inflow of infective immigrants, is presented and analyzed. The optimal control theory is applied to this model to study the impact of various malaria and vector control strategies, such as screening of immigrants, treatment of drug-sensitive infections, treatment of drug-resistant infections, and the use of insecticide-treated bed nets and indoor spraying of mosquitoes. The results of the model emphasize the importance of using a combination of all four controls tools for effective malaria intervention. Next, a two-age-class mathematical model for malaria transmission with asymptomatic carriers is developed and analyzed. In development of this model, four possible control measures are analyzed: the use of long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic, and screening and treatment of asymptomatic individuals. The numerical results show that a disease-free equilibrium can be attained if all four control measures are used. A common pitfall for most epidemiological models is the absence of real data; model-based conclusions have to be drawn based on uncertain parameter values. In this thesis, an approach to study the robustness of optimal control solutions under such parameter uncertainty is presented. Numerical analysis of the optimal control problem in the presence of parameter uncertainty demonstrate the robustness of the optimal control approach that: when a comprehensive control strategy is used the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the design of cost-effective strategies for disease control with multiple interventions, even under considerable uncertainty of model parameters. Finally, a separate work modeling the within-host Plasmodium falciparum infection in humans is presented. The developed model allows re-infection of already-infected red blood cells. The model hypothesizes that in severe malaria due to parasite quest for survival and rapid multiplication, the Plasmodium falciparum can be absorbed in the already-infected red blood cells which accelerates the rupture rate and consequently cause anemia. Analysis of the model and parameter identifiability using Markov chain Monte Carlo methods is presented.
Resumo:
Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.