26 resultados para nanoporöse Template
Resumo:
Työn tavoitteena oli selvittää yrityksen tuotekehitysorganisaation tuoteylläpitotoiminnan nykytila ja kartoittaa sen mahdolliset ongelmakohdat sekä kehityskohteet. Lisäksi tavoitteena oli vertailla yrityksen toimintamalleja toisen yrityksen vastaavaan organisaatioon kartoitettujen ongelmakohtien pohjalta, ja laatia kehitysehdotus ongelmien ratkaisemiseksi. Tutkimusmenetelminä käytettiin nykytilaselvityksessä semistrukturoituja asiantuntijahaastatteluja ja vertailututkimusta (engl. benchmarking). Kehitysehdotuksen laatimisen tueksi työhön sisältyi myös kirjallisuuskatsaus, jossa käsiteltiin esimerkiksi tuotteen elinkaarenhallintaa, konfiguraationhallintaa ja prosessijohtamista. Nykytilaselvityksen tuloksena oli kuvaus yrityksen tuoteylläpidontoiminnasta sekä havaituista ongelmakohdista. Vertailututkimuksen tuloksena saatiin kuvaus kohdeyrityksen kartoitettuihin ongelmakohtiin liittyvistä toimintamalleista, sekä joitain ratkaisuvaihtoehtoja. Nykytilaselvityksen ja vertailututkimuksen tulosten sekä kirjallisuuskatsauksen perusteella laadittu kehitysehdotus perustuu konfiguraationhallintasuunnitelman pohjaan, johon on sisällytetty kaikki ratkaisuehdotukset. Kehitysehdotuksessa esitetyt ratkaisuehdotukset vastaavat lähtökohtaisesti kartoitettuihin ongelmakohtiin, mutta ne vaativat vielä jatkokehittelyä. Työn tulokset toimivat pohjana yksityiskohtaisemmalle suunnittelulle ja jatkokehittelylle.
Resumo:
Biorefining is defined as sustainable conversion of biomass into marketable products and energy. Forests cover almost one third of earth’s land area, and account for approximately 40% of the total annual biomass production. In forest biorefining, the wood components are, in addition to the traditional paper and board products, converted into chemicals and biofuels. The major components in wood are cellulose, hemicelluloses, and lignin. The main hemicellulose in softwoods, which are of interest especially for the Nordic forest industry, is O-acetyl galactoglucomannan (GGM). GGM can be isolated in industrial scale from the waste waters of the mechanical pulping process, but is not yet today industrially utilized. In order to attain desired properties of GGM for specific end-uses, chemical and enzymatic modifications can be performed. Regioselective modifications of GGM, and other galactose-containing polysaccharides were done by oxidations, and by combining oxidations with subsequent derivatizations of the formed carbonyl or carboxyl groups. Two different pathways were investigated: activation of the C-6 positions in different sugar units by TEMPO-mediated oxidation, and activation of C-6 position in only galactose-units by oxidation catalyzed by the enzyme galactose oxidase. The activated sites were further selectively derivatized; TEMPO-oxidized GGM by a carbodiimide-mediated reaction forming amides, and GO-oxidized GGM by indium-mediated allylation introducing double or triple bonds to the molecule. In order to better understand the reaction, and to develop a MALDI-TOF-MS method for characterization of regioselectively allylated GGM, α-D-galactopyranoside and raffinose were used as model compounds. All reactions were done in aqueous media. To investigate the applicability of the modified polysaccharides for, e.g., cellulose surface functionalization, their sorption onto pulp fibres was studied. Carboxylation affects the sorption tendency significantly; a higher degree of oxidation leads to lower sorption. By controlling the degree of oxidation of the polysaccharides and the ionic strength of the sorption media, high degrees of sorption of carboxylated polysaccharides onto cellulose could, however, be obtained. Anionic polysaccharides were used as templates during laccase-catalyzed polymerization of aniline, offering a green, chemo-enzymatic route for synthesis of conducting polyaniline (PANI) composite materials. Different polysaccharide templates, such as, native GGM, TEMPO-oxidized GGM, naturally anionic κ-carrageenan, and nanofibrillated cellulose produced by TEMPO-oxidation, were assessed. The conductivity of the synthesized polysaccharide/PANI biocomposites varies depending on the polysaccharide template; κ-CGN, the anionic polysaccharide with the lowest pKa value, produces the polysaccharide/PANI biocomposites with the highest conductivity. The presented derivatization, sorption, and polymerization procedures open new application windows for polysaccharides, such as spruce GGM. The modified polysaccharides and the conducting biocomposites produced provide potential applications in biosensors, electronic devices, and tissue engineering.
Resumo:
To manage foreign operations, companies must often send their employees on international assignments. Repatriating these expatriates can be difficult because they have been forgotten during their posting, and their new experiences are not utilised. In addition to the possible difficulties in organisational repatriation, the returnee can suffer from readjustment problems after a lengthy stay abroad has changed their habits and even identity. This thesis examines the repatriation experience of Finnish assignees returning from Russia. The purpose of the study is to understand how the repatriation experience influences their readjustment to work in Finland. This experience is influenced by many factors including personal and situational changes, the repatriation process, job and organisational factors, and individual’s motives. The theoretical background of the study is founded on two models of repatriation adjustment. A refined, holistic theoretical framework for the study is created. It describes the formation of the repatriation experience and its importance for readjustment to work and retention. The qualitative research approach is suitable for the thesis which examines the returnees’ personal experiences and feelings: a qualitative case study aims to explain the phenomenon in-depth and comprehensively. The data was collected in summer 2013 through semi-standardised interviews with eight Finnish repatriates. They had returned from Russia within the last two years. The data was analysed by structuring the interview transcripts using template analysis. The results supported earlier literature and suggest that the re-entry remains a challenging phase for both the individual and the company. For some, adjusting to a new job was difficult for various reasons. The repatriates underwent personal change and development and felt it was for the better. Many repatriates criticised the company’s repatriation process upon return. Finding a suitable return job was not clear. Instead, the returnees had to be active in finding a new position. Many assignees had only modest career-related motives regarding the assignment and they had realistic expectations about the return. Therefore they were not extremely surprised or dissatisfied when they were not actively offered positions or support by the company. The significance of motives stood out even more than the theory predicted. As predicted, they are linked to the expectations of employees. Moreover, if the employees are motivated to remain in the company, they can tolerate partly a negative repatriation experience. Despite the complexity of the return and readjustment, the assignment as a whole was seen as a rewarding experience by all participants.
Resumo:
Polymeric materials that conduct electricity are highly interesting for fundamental studies and beneficial for modern applications in e.g. solar cells, organic field effect transistors (OFETs) as well as in chemical and bio‐sensing. Therefore, it is important to characterize this class of materials with a wide variety of methods. This work summarizes the use of electrochemistry also in combination with spectroscopic methods in synthesis and characterization of electrically conducting polymers and other π‐conjugated systems. The materials studied in this work are intended for organic electronic devices and chemical sensors. Additionally, an important part of the presented work, concerns rational approaches to the development of water‐based inks containing conducting particles. Electrochemical synthesis and electroactivity of conducting polymers can be greatly enhanced in room temperature ionic liquids (RTILs) in comparison to conventional electrolytes. Therefore, poly(para‐phyenylene) (PPP) was electrochemically synthesized in the two representative RTILs: bmimPF6 and bmiTf2N (imidazolium and pyrrolidinium‐based salts, respectively). It was found that the electrochemical synthesis of PPP was significantly enhanced in bmimPF6. Additionally, the results from doping studies of PPP films indicate improved electroactivity in bmimPF6 during oxidation (p‐doping) and in bmiTf2N in the case of reduction (n‐doping). These findings were supported by in situ infrared spectroscopy studies. Conducting poly(benzimidazobenzophenanthroline) (BBL) is a material which can provide relatively high field‐effect mobility of charge carriers in OFET devices. The main disadvantage of this n‐type semiconductor is its limited processability. Therefore in this work BBL was functionalized with poly(ethylene oxide) PEO, varying the length of side chains enabling water dispersions of the studied polymer. It was found that functionalization did not distract the electrochemical activity of the BBL backbone while the processability was improved significantly in comparison to conventional BBL. Another objective was to study highly processable poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) water‐based inks for controlled patterning scaled‐down to nearly a nanodomain with the intention to fabricate various chemical sensors. Developed PEDOT:PSS inks greatly improved printing of nanoarrays and with further modification with quaternary ammonium cations enabled fabrication of PEDOT:PSS‐based chemical sensors for lead (II) ions with enhanced adhesion and stability in aqueous environments. This opens new possibilities for development of PEDOT:PSS films that can be used in bio‐related applications. Polycyclic aromatic hydrocarbons (PAHs) are a broad group of π‐conjugated materials consisting of aromatic rings in the range from naphthalene to even hundred rings in one molecule. The research on this type of materials is intriguing, due to their interesting optical properties and resemblance of graphene. The objective was to use electrochemical synthesis to yield relatively large PAHs and fabricate electroactive films that could be used as template material in chemical sensors. Spectroscopic, electrochemical and electrical investigations evidence formation of highly stable films with fast redox response, consisting of molecules with 40 to 60 carbon atoms. Additionally, this approach in synthesis, starting from relatively small PAH molecules was successfully used in chemical sensor for lead (II).
Resumo:
The topic of this Master’s Thesis is risk assessment in the supply chain, and the work was done for a company operating in the pharmaceutical industry. The unique features of the industry bring additional challenges to risk management, due to high regulatory, docu-mentation and traceability requirements. The objective of the thesis was to generate a template for assessing the risks in the supply chain of current and potential suppliers of the case company. Risks pertaining to the case setting were sought mainly from in-house expertise of this specific product and supply chain as well as academic research papers and theory on risk management. A questionnaire was set up to assess the found risks on impact, occurrence and possibility of detection. Through this classification of the severity of the risks, the supplier assessment template was formed. A questionnaire template, comprised of the top 10 risks affecting the flow of information and materials in this setting, was formulated to serve as a generic tool for assessing risks in the supply chain of a pharmaceutical company. The template was tested on another supplier for usability and accuracy of found risks, and it demonstrated functioning in a differing supply chain and product setting.
Resumo:
Sexual dimorphism is commonly understood as differences in external features, such as morphological features or coloration. However, it can more broadly encompass behavior and physiology and at the core of these differences is the genetic mechanism – mRNA and protein expression. How, and which, molecular mechanisms influence sexually dimorphic features is not well understood thus far. DNA, RNA and proteins are the template required to create the phenotype of an individual, and they are connected to each other via processes of transcription and translation. As the genome of males and females are almost identical with the exception of the few genes on the sex chromosome or the sex-determining alleles (in the case of organisms without sex chromosomes), it is likely that many of the downstream processes resulting in sexual dimorphism are produced by changes in gene regulation and result from a regulatory cascade and not from a vastly different gene composition. Thus, in this thesis a systems biology approach is used to understand sexual dimorphism at all molecular levels and how different genomic features, e.g. sex chromosome evolution, can affect the interplay of these molecules. The threespine stickleback, Gasterosteus aculeatus, is used as the model to investigate molecular mechanisms of sexual dimorphism. It has well-characterized ecology and behavior, especially in the breeding season when sexual dimorphism is high. Moreover, threespine stickleback has a recently evolved Y chromosome in the early stages of sex chromosome evolution, characterized by a lack of recombination leading to degeneration (i.e. gene loss). The aim of my thesis is to investigate how the genotype links to the molecular phenotype and relates to differences in molecular expression between males and females. Based on previous research on sex differences in mRNA expression, I investigated sex-biased protein expression in adult fish outside the breeding season to see if differences persisted after translation. As sex-biased expression also prevailed in the proteome and previous transcription expression seemed to be related to the sex chromosomes, I investigated the genome level with a particular focus on the sex-chromosomes. I characterized the status of Y chromosome degeneration in the threespine stickleback and its effects on gene function. Furthermore, since the degeneration process leaves genes in a single copy in males, I examined whether the resulting dosage difference of messenger RNA for hemizygous genes is compensated as it is in other organisms. In addition, threespine sticklebacks have wellcharacterized behavioral differences related to the male’s social status during the breeding season. To understand the connection between the genotype and behavior, I examined gene expression patterns related to breeding behavior using dominant and subordinate males as well as female
Resumo:
The objective of this Master’s thesis is to develop a model which estimates net working capital (NWC) monthly in a year period. The study is conducted by a constructive research which uses a case study. The estimation model is designed in the need of one case company which operates in project business. Net working capital components should be linked together by an automatic model and estimated individually, including advanced components of NWC for example POC receivables. Net working capital estimation model of this study contains three parts: output template, input template and calculation model. The output template gets estimate values automatically from the input template and the calculation model. Into the input template estimate values of more stable NWC components are inputted manually. The calculate model gets estimate values for major affecting components automatically from the systems of a company by using a historical data and made plans. As a precondition for the functionality of the estimation calculation is that sales are estimated in one year period because the sales are linked to all NWC components.
Resumo:
Nowadays, when most of the business are moving forward to sustainability by providing or getting different services from different vendors, Service Level Agreement (SLA) becomes very important for both the business providers/vendors and as well as for users/customers. There are many ways to inform users/customers about various services with its inherent execution functionalities and even non-functional/Quality of Services (QoS) aspects through negotiating, evaluating or monitoring SLAs. However, these traditional SLA actually do not cover eco-efficient green issues or IT ethics issues for sustainability. That is why green SLA (GSLA) should come into play. GSLA is a formal agreement incorporating all the traditional commitments as well as green issues and ethics issues in IT business sectors. GSLA research would survey on different traditional SLA parameters for various services like as network, compute, storage and multimedia in IT business areas. At the same time, this survey could focus on finding the gaps and incorporation of these traditional SLA parameters with green issues for all these mentioned services. This research is mainly points on integration of green parameters in existing SLAs, defining GSLA with new green performance indicators and their measurable units. Finally, a GSLA template could define compiling all the green indicators such as recycling, radio-wave, toxic material usage, obsolescence indication, ICT product life cycles, energy cost etc for sustainable development. Moreover, people’s interaction and IT ethics issues such as security and privacy, user satisfaction, intellectual property right, user reliability, confidentiality etc could also need to add for proposing a new GSLA. However, integration of new and existing performance indicators in the proposed GSLA for sustainable development could be difficult for ICT engineers. Therefore, this research also discovers the management complexity of proposed green SLA through designing a general informational model and analyses of all the relationships, dependencies and effects between various newly identified services under sustainability pillars. However, sustainability could only be achieved through proper implementation of newly proposed GSLA, which largely depends on monitoring the performance of the green indicators. Therefore, this research focuses on monitoring and evaluating phase of GSLA indicators through the interactions with traditional basic SLA indicators, which would help to achieve proper implementation of future GSLA. Finally, this newly proposed GSLA informational model and monitoring aspects could definitely help different service providers/vendors to design their future business strategy in this new transitional sustainable society.
Resumo:
It has long been known that amino acids are the building blocks for proteins and govern their folding into specific three-dimensional structures. However, the details of this process are still unknown and represent one of the main problems in structural bioinformatics, which is a highly active research area with the focus on the prediction of three-dimensional structure and its relationship to protein function. The protein structure prediction procedure encompasses several different steps from searches and analyses of sequences and structures, through sequence alignment to the creation of the structural model. Careful evaluation and analysis ultimately results in a hypothetical structure, which can be used to study biological phenomena in, for example, research at the molecular level, biotechnology and especially in drug discovery and development. In this thesis, the structures of five proteins were modeled with templatebased methods, which use proteins with known structures (templates) to model related or structurally similar proteins. The resulting models were an important asset for the interpretation and explanation of biological phenomena, such as amino acids and interaction networks that are essential for the function and/or ligand specificity of the studied proteins. The five proteins represent different case studies with their own challenges like varying template availability, which resulted in a different structure prediction process. This thesis presents the techniques and considerations, which should be taken into account in the modeling procedure to overcome limitations and produce a hypothetical and reliable three-dimensional structure. As each project shows, the reliability is highly dependent on the extensive incorporation of experimental data or known literature and, although experimental verification of in silico results is always desirable to increase the reliability, the presented projects show that also the experimental studies can greatly benefit from structural models. With the help of in silico studies, the experiments can be targeted and precisely designed, thereby saving both money and time. As the programs used in structural bioinformatics are constantly improved and the range of templates increases through structural genomics efforts, the mutual benefits between in silico and experimental studies become even more prominent. Hence, reliable models for protein three-dimensional structures achieved through careful planning and thoughtful executions are, and will continue to be, valuable and indispensable sources for structural information to be combined with functional data.
Resumo:
Kvantitatiivinen reaaliaikainen polymeraasiketjureaktio (engl. polymerase chain reaction, PCR) on osoittautunut käyttäjäystävällisimmäksi menetelmäksi nukleiinihapposekvenssien kvantitoimisessa. Tätä menetelmää voidaan herkistää pienempien DNA-pitoisuuksien havaitsemiseen käyttämällä hyväksi aikaerotteista fluorometriaa (engl. time-resolved fluorometry, TRF) ja luminoivia lantanidileimoja, joiden fluoresenssin pitkän eliniän ansiosta emission mittaus voidaan suorittaa vasta hetki virittävän valopulssin jälkeen, jolloin lyhytikäinen taustasäteily ehtii sammua. Tuloksena saadaan korkea signaali-taustasuhde. Tämän diplomityön tarkoituksena oli rakentaa TRF:än pystyvä reaaliaikainen PCR-laite, sillä tällaista laitetta ei ole markkinoilla tarjolla. Laite rakennettiin kehittämällä lämpökierrätin ja yhdistämällä se valmiiseen TRF:än kykenevään mittapäähän. Mittapään ja lämpökierrättimen hallitsemiseksi kehitettiin myös tietokoneohjelma. Valon tuottamiseksi ja mittaamiseksi haluttiin käyttää edullisia komponentteja, joten työssä käytettiin valmiin mittapään optiikkaa, jossa viritys tapahtuu hohtodiodilla (engl. light-emitting diode, LED) ja lantanidileiman emission mittaus fotodiodilla (engl. photodiode, PD) tai valomonistinputkella (engl. photomultiplier tube, PMT). Myös mittapään suorituskykyä tutkittiin. Työtä varten kehitettiin lämpökierrätin, joka koostui Peltier-elementillä lämmitettävästä PCR-putkitelineestä ja lämpökannesta. Mittalaitteen suorituskyvyn tutkimiseen käytettiin kelaattikomplementaatioon perustuvaa PCR-tuotteen havaitsemismenetelmää. Kelaattikomplementaatio perustuu kahteen erilliseen oligonukleotidimolekyyliin, joista toiseen on sidottu lantanidi-ioni ja toiseen valoa absorboiva ligandirakenne, jotka yhdessä muodostavat fluoresoivan kokonaisuuden. Kehitetyn lämpökierrättimen todettiin olevan tarpeeksi tarkka sekä tehokas ja sen lämmitys- ja jäähdytysnopeuden maksimeiksi saatiin 2,6 °C/sekunti. Detektorina käytetyn PD:n ei todettu olevan tarpeeksi herkkä emission havainnoimiseksi ja se korvattiin laitteessa PMT:llä. Käytetyllä PCR-määrityksellä kynnyssykleiksi (engl. threshold cycle, Ct) sekä kehitetylle että referenssilaitteelle saatiin 28,4 käyttämällä samaa 100 000 kopion DNA:n aloitusmäärää. Työssä osoitettiin, että on mahdollista kehittää edullisia komponentteja käyttävä, TRF:än pystyvä, reaaliaikainen PCR-laite, joka kykenee vastaavaan Ct-arvoon kuin vertailulaite. PD:n herkkyys ei kuitenkaan riittänyt. Tulokset olivat lupaavia, sillä LED- ja PD-teknologiat kehittyvät ja markkinoille on tullut myös muita komponentteja, joiden avulla on tulevaisuudessa mahdollista kehittää vielä herkempi laite.
Resumo:
Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.