10 resultados para eutrophic reservoir
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Following a high wind event on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Transportation (DOT) contracted with the Bridge Engineering Center at Iowa State University to design and install a monitoring system capable of providing notification of the occurrence of subsequent high wind events. In subsequent years, a similar system was installed on the Red Rock Reservoir Bridge to provide the same wind monitoring capabilities and notifications to the Iowa DOT. The objectives of the system development and implementation are to notify personnel when the wind speed reaches a predetermined threshold such that the bridge can be closed for the safety of the public, correlate structural response with wind-induced response, and gather historical wind data at these structures for future assessments. This report describes the two monitoring systems, their components, upgrades, functionality, and limitations, and results from one year of wind data collection at both bridges.
Resumo:
Following high winds on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Transportation (DOT) contracted with the Bridge Engineering Center at Iowa State University to design and install a monitoring system capable of providing notification of the occurrence of subsequent high winds. Although measures were put into place following the 2006 event at the Saylorville Reservoir Bridge, knowledge of the performance of this bridge during high wind events was incomplete. Therefore, the Saylorville Reservoir Bridge was outfitted with an information management system to investigate the structural performance of the structure and the potential for safety risks. In subsequent years, given the similarities between the Saylorville and Red Rock Reservoir bridges, a similar system was added to the Red Rock Reservoir Bridge southeast of Des Moines. The monitoring system developed and installed on these two bridges was designed to monitor the wind speed and direction at the bridge and, via a cellular modem, send a text message to Iowa DOT staff when wind speeds meet a predetermined threshold. The original intent was that, once the text message is received, the bridge entrances would be closed until wind speeds diminish to safe levels.
Resumo:
Tillage systems play a significant role in agricultural production throughout Iowa and the Midwest. It has been well documented that increased tillage intensities can reduce soil organic matter in the topsoil due to increased microbial activity and carbon (C ) oxidation. The potential loss of soil organic matter due to tillage operations is much higher for high organic matter soils than low organic matter soils. Tillage effects on soil organic matter can be magnified through soil erosion and loss of soil productivity. Soil organic matter is a natural reservoir for nutrients, buffers against soil erosion, and improves the soil environment to sustain soil productivity. Maintaining soil productivity requires an agriculture management system that maintains or improves soil organic matter content. Combining cropping systems and conservation tillage practices, such as no-tillage, strip-tillage, or ridge-tillage, are proven to be very effective in improving soil organic matter and soil quality.
Resumo:
In 1980, a Vanguard High Pressure Water Blaster capable of providing 10 gallons of water per minute at 2000 psi was purchased to evaluate water blasting as a crack cleaning method prior to crack filling on asphalt concrete pavements. Afer some iniital trials demonstrated its effectiveness of removing dirt, debris and vegetation, it was included in joint and crack maintenance research on Iowa 7 in Webster County. The objective of the research was to evaluate six crack preparation methods and seven "sealant" materials. The cleaning and sealing was performed in the spring of 1983. Visual evaluations of the performance were made in the fall of 1983 and spring of 1985. Compressed air and/or high pressure water did not adequately prepare cracks less than 3/8 inch wide. Routing or sawing was necessary to provide a sealant reservoir. The water blaster was more effective than compressed air in removing dirt, debris and vegetation but this did not yield significant improvement in sealant adhesion or longevity. Periodic crack filling is necessary on ACC surfaces throughout the remaining life of the pavement.
Resumo:
The objective of this research was to evaluate the performance of portland cement concrete pavement contraction joints utilizing a variety of sealants and joint preparations and to identify an effective sealant system. The variables evaluated were: (1) sealant material; (2) joint preparation; (3) size of saw cut (sealant reservoir); and (4) the use of backing material. This progress report contains project results to date.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges are scheduled for removal. Five of these are old high-truss single-lane bridges, each bridge having several simple spans. The other bridge is a fairly modern (1955) double 4-span continuous beam-and-slab composite highway bridge. The availability of these bridges affords an unusual opportunity for study of the behavior of full-scale bridges. Because of the magnitude of the potential testing program, a feasibility study was initiated and the results are presented in this two-part final report. Part I summarizes the findings and Part II presents the supporting detailed information.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges crossing the river were scheduled for removal. One of these, an old pin-connected, high-truss, single-lane bridge, was selected for a comprehensive testing program which included ultimate load tests, service load tests, and a supplementary test program. A second bridge was used for a limited service load test program. The results of the research are detailed in two interim reports. The first interim report outlines the ultimate load tests and the second interim report details the results of the service load and supplementary test program. This report presents a summary of these findings along with recommendations for implementation of the findings.
Resumo:
In conventional construction practices, a longitudinal joint is sawed in a PCC (Portland Cement Concrete) pavement to control concrete shrinkage cracking between two lanes of traffic. Sawing a joint in hardened concrete is an expensive and time consuming operation. The longitudinal joint is not a working joint (in comparison to a transverse joint) as it is typically tied with a tie bar at 30 inch spacing. The open joint reservoir, left by the saw blade, typically is filled or sealed with a durable crack sealant to keep incompressibles and water from getting into the joint reservoir. An experimental joint forming knife has been developed. It is installed under the paving machine to form the longitudinal joint in the wet concrete as a part of the paving process. Through this research method, forming a very narrow longitudinal joint during the paving process, two conventional paving operations can be eliminated. Joint forming eliminates the need of the joint sawing operation in the hard concrete, and as the joint that is formed does not leave a wide-open reservoir, but only a hairline crack, it does not need the joint filling or sealing operation. Therefore, the two conventional longitudinal joint sawing and sealing operations are both being eliminated by this innovation. A laboratory scale prototype joint forming knife was built and tested, initially forming joints in small concrete beams. The results were positive so the method was proposed for field testing. Initial field tests were done in the construction season of 2001, limited to one paving contractor. A number of modifications were made to the knife throughout the field tests. About 3000 feet of longitudinal joint was formed in 2001. Additional testing was done in the 2002 construction season, working with the same contractor. About 150,000 feet of longitudinal joint was formed in 2002. Evaluations of the formed joints were done to determine longitudinal joint hairline crack development rate and appearance. Additional tests will be done in the next construction season to improve or perfect the longitudinal joint forming technique.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges crossing the river were scheduled for removal. One of these, an old pinconnected high-truss single-lane bridge, was selected for a testing program which included ultimate load tests. The purpose of the ultimate load tests, which are summarized in this report, was to relate design and rating procedures presently used in bridge design to the field behavior of this type of truss bridge. The ultimate load tests consisted of ultimate load testing of one span of the bridge, of two I-shaped floorbeams, and of two panels of the timber deck. The theoretical capacity of each of these components is compared with the results from the field tests.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges crossing the river were scheduled for removal. Two of these were incorporated into a comprehensive test program to study the behavior of old pin-connected high-truss single-lane bridges. The test program consisted of ultimate load tests, service load tests and a supplementary test program. The results reported in this report cover the service load tests on the two bridges as well as the supplementary tests, both static and fatigue, of eyebar members removed from the two bridges. The field test results of the service loading are compared with theoretical results of the truss analysis.