162 resultados para Regulatory T-cell


Relevância:

30.00% 30.00%

Publicador:

Resumo:

N(6)-methyl-adenines can serve as epigenetic signals for interactions between regulatory DNA sequences and regulatory proteins that control cellular functions, such as the initiation of chromosome replication or the expression of specific genes. Several of these genes encode master regulators of the bacterial cell cycle. DNA adenine methylation is mediated by Dam in gamma-proteobacteria and by CcrM in alpha-proteobacteria. A major difference between them is that CcrM is cell cycle regulated, while Dam is active throughout the cell cycle. In alpha-proteobacteria, GANTC sites can remain hemi-methylated for a significant period of the cell cycle, depending on their location on the chromosome. In gamma-proteobacteria, most GATC sites are only transiently hemi-methylated, except regulatory GATC sites that are protected from Dam methylation by specific DNA-binding proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adrenoceptors are prototypic members of the superfamily of seven transmembrane domain, G protein-coupled receptors. Study of the properties of several mutationally activated adrenoceptors is deepening understanding of the normal functioning of this ubiquitous class of receptors. The new findings suggest an expansion of the classical ternary complex model of receptor action to include an explicit isomerization of the receptors from an inactive to an active state which couples to the G protein ('allosteric ternary complex model'). This isomerization involves conformational changes which may occur spontaneously, or be induced by agonists or appropriate mutations which abrogate the normal 'constraining' function of the receptor, allowing it to 'relax' into the active conformation. Robert Lefkowitz and colleagues discuss the physiological and pathophysiological implications of these new insights into regulation of receptor activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ca(2+)-regulated calcineurin/nuclear factor of activated T cells (NFAT) cascade controls alternative pathways of T-cell activation and peripheral tolerance. Here, we describe reduction of NFATc2 mRNA expression in the lungs of patients with bronchial adenocarcinoma. In a murine model of bronchoalveolar adenocarcinoma, mice lacking NFATc2 developed more and larger solid tumors than wild-type littermates. The extent of central tumor necrosis was decreased in the tumors in NFATc2((-/-)) mice, and this finding was associated with reduced tumor necrosis factor-alpha and interleukin-2 (IL-2) production by CD8(+) T cells. Adoptive transfer of CD8(+) T cells of NFATc2((-/-)) mice induced transforming growth factor-beta(1) in the airways of recipient mice, thus supporting CD4(+)CD25(+)Foxp-3(+)glucocorticoid-induced tumor necrosis factor receptor (GITR)(+) regulatory T (T(reg)) cell survival. Finally, engagement of GITR in NFATc2((-/-)) mice induced IFN-gamma levels in the airways, reversed the suppression by T(reg) cells, and costimulated effector CD4(+)CD25(+) (IL-2Ralpha) and memory CD4(+)CD127(+) (IL-7Ralpha) T cells, resulting in abrogation of carcinoma progression. Agonistic signaling through GITR, in the absence of NFATc2, thus emerges as a novel possible strategy for the treatment of human bronchial adenocarcinoma in the absence of NFATc2 by enhancing IL-2Ralpha(+) effector and IL-7Ralpha(+) memory-expressing T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of viral genome expression is the result of complex cooperation between viral proteins and host cell factors. We report here the characterization of a novel cellular factor sharing homology with the specific cysteine-rich C-terminal domain of the basic helix-loop-helix repressor protein I-mfa. The synthesis of this new factor, called HIC for Human I-mfa domain-Containing protein, is controlled at the translational level by two different codons, an ATG and an upstream non-ATG translational initiator, allowing the production of two protein isoforms, p32 and p40, respectively. We show that the HIC protein isoforms present different subcellular localizations, p32 being mainly distributed throughout the cytoplasm, whereas p40 is targeted to the nucleolus. Moreover, in trying to understand the function of HIC, we have found that both isoforms stimulate in T-cells the expression of a luciferase reporter gene driven by the human T-cell leukemia virus type I-long terminal repeat in the presence of the viral transactivator Tax. We demonstrate by mutagenesis that the I-mfa-like domain of HIC is involved in this regulation. Finally, we also show that HIC is able to down-regulate the luciferase expression from the human immunodeficiency virus type 1-long terminal repeat induced by the viral transactivator Tat. From these results, we propose that HIC and I-mfa represent two members of a new family of proteins regulating gene expression and characterized by a particular cysteine-rich C-terminal domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The exact role of individual T cell-subsets in the development of rejection is not clearly defined. Given their distinct phenotypes, effector functions and trafficking patterns, naïve (CD45RBhiCD44lo) and memory (CD45RBloCD44hi) T cells may play distinct roles in anti-donor immunity after transplantation. Furthermore, only the CD4+CD45RBlo population contains CD4+CD25+ T cells, a subset with suppressive functions playing a major role in the maintenance of peripheral tolerance. The aim of this work was to study the contribution of these individual subsets in alloresponses via the direct and indirect pathways using a murine experimental model. Methods and materials: Purified naïve or memory CD4+ T cells were adoptively transferred into lymphopenic mice undergoing a skin allograft. Donor to recipient MHC combinations were chosen in order to study the direct and the indirect pathways of allorecognition separately. Graft survival and in vivo expansion, effector function and trafficking of the transferred T cells was assessed at different time points after transplantation. Results: We found that the cross-reactive CD4+CD45RBlo memory T-cell pool was heterogeneous and contained cells with regulatory potentials, both in the CD4+CD25+ and CD4+CD25-populations. CD4+ T cells capable of inducing strong primary alloreactive responses in vitro and rejection of a first allograft in vivo were mainly contained within the CD45RBhi naïve CD4+ T-cell compartment. CD4+CD45RBlo T cells proliferated less abundantly to allogeneic stimulation than their naïve counterparts both in vitro and in vivo, and allowed prolonged allograft survival even after the depletion of the CD4+CD25+ subset. Interestingly, CD4+CD25-CD45RBlo T cells were capable of prolonging allograft survival, mainly when the indirect pathway was the only mechanism of allorecognition. The indirect pathway response, which was shown to drive true chronic rejection and contribute to chronic allograft dysfunction, was predominantly mediated by naïve CD4+ T cells. Conclusion: This work provides new insights into the mechanisms that drive allograft rejection and should help develop new clinical immunosuppressive protocols. In particular, our results highlight the importance of selectively targeting individual T-cell subsets to prevent graft rejection but at the same time maintain immune protective responses to common pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Families of clonally expressed major histocompatibility complex (MHC) class I-specific receptors provide specificity to and regulate the function of natural killer (NK) cells. One of these receptors, mouse Ly49A, is expressed by 20% of NK cells and inhibits the killing of H-2D(d) but not D(b)-expressing target cells. Here, we show that the trans-acting factor TCF-1 binds to two sites in the Ly49A promoter and regulates its activity. Moreover, we find that TCF-1 determines the size of the Ly49A NK cell subset in vivo in a dosage-dependent manner. We propose that clonal Ly49A acquisition during NK cell development is regulated by TCF-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How immature CD4+CD8+ thymocytes become committed to either the CD4 (helper) or CD8 (cytotoxic) lineage is controversial. Genetic ablation of a silencer element in the gene encoding CD4 provides new evidence that CD8 lineage commitment occurs via a stochastic, rather than instructive, mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA double strand breaks (DSBs) are mainly repaired via homologous recombination (HR) or nonhomologous end joining (NHEJ). These breaks pose severe threats to genome integrity but can also be necessary intermediates of normal cellular processes such as immunoglobulin class switch recombination (CSR). During CSR, DSBs are produced in the G1 phase of the cell cycle and are repaired by the classical NHEJ machinery. By studying B lymphocytes derived from patients with Cornelia de Lange Syndrome, we observed a strong correlation between heterozygous loss-of-function mutations in the gene encoding the cohesin loading protein NIPBL and a shift toward the use of an alternative, microhomology-based end joining during CSR. Furthermore, the early recruitment of 53BP1 to DSBs was reduced in the NIPBL-deficient patient cells. Association of NIPBL deficiency and impaired NHEJ was also observed in a plasmid-based end-joining assay and a yeast model system. Our results suggest that NIPBL plays an important and evolutionarily conserved role in NHEJ, in addition to its canonical function in sister chromatid cohesion and its recently suggested function in HR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters. To explore the global extent of this regulatory mechanism, we determined the methylation state of the entire chromosome at every base pair at five time points in the cell cycle using single-molecule, real-time sequencing. The methylation state of 4,515 GANTC sites, preferentially positioned in intergenic regions, changed progressively from full to hemimethylation as the replication forks advanced. However, 27 GANTC sites remained unmethylated throughout the cell cycle, suggesting that these protected sites could participate in epigenetic regulatory functions. An analysis of the time of activation of every cell-cycle regulatory transcription start site, coupled to both the position of a GANTC site in their promoter regions and the time in the cell cycle when the GANTC site transitions from full to hemimethylation, allowed the identification of 59 genes as candidates for epigenetic regulation. In addition, we identified two previously unidentified N(6)-methyladenine motifs and showed that they maintained a constant methylation state throughout the cell cycle. The cognate methyltransferase was identified for one of these motifs as well as for one of two 5-methylcytosine motifs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adult stem cells are instrumental for renewal, regeneration, and repair. Self-renewal and the capacity to generate a tissue for an extended period of time (theoretically a life time) are fundamental properties of adult stem cells that allow longterm tissue reconstruction from a single stem cell as experimentally demonstrated with the bone marrow and the skin. Moreover, human epidermal stem cells (holoclones) can be extensively expanded and manipulated in culture before they are transplanted. We have taken advantage of these unique capacities to demonstrate the feasibility of a single epidermal stem cell approach for ex vivo gene therapy using recessive dystrophic epidermolysis bullosa (RDEB) as a model system. We have demonstrated that is possible to reconstruct a functional epidermis and anchoring fibers from the progeny of a single RDEB epidermal stem cell transduced with a Col7a1 cDNA by means of a SIN retrovirus. Demonstrations of safe proviral insertion, absence of tumorogenicity and of dissemination of the transduced engrafted cells meet regulatory affairs safety requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Current experimental data suggest that CD4+CD25+Foxp3+regulatory T cells (Tregs) based immunotherapy would be of greatinterest to promote donor-specific immune tolerance in transplantation(Tx). Whether and how adoptive transfer of Tregs could be bestcombined with current immunosuppressive regimens in clinicalsettings remains to be defined. Using an experimental Tx model,we had previously shown that the transfer of antigen-specific Tregspromoted long-term skin allograft acceptance in lymphopenic mice,in the absence of any immunosuppressive drug. However, allograftsurvival was only slightly prolonged when Tregs were transferredalone into non-lymphopenic mice, suggesting that in more stringentconditions such as in clinical settings adjuvant therapies may beneeded to effectively control alloreactive T cells (Teff).Methods and Materials: Here we have investigated the effects ofvarious immunosuppressive drugs on the survival, proliferation andeffector function of Teff and Tregs in response to alloantigens in in vitroassays and in our in vivo Tx model.Results: Teff proliferation was inhibited in a dose-dependant mannerby rapamycin and cyclosporine A, while anti-CD154 only marginallyaffected Teff proliferation and survival in vitro. Rapamycin promotedapoptosis of Teff as compared to Tregs that were more resistant underthe same culture conditions. In vivo, the transfer of donor-specificTregs could be advantageously combined with rapamycin andanti-CD154 to significantly prolong MHC-mismatched skin allograftsurvival in non-lymphopenic recipients.Conclusion: Taken together, our data indicate thatimmunosuppressive drugs differentially target T-cell subsets and couldpromote Tregs expansion and/or function while controlling the Teff pool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central question in developmental biology is how multicellular organisms coordinate cell division and differentiation to determine organ size. In Arabidopsis roots, this balance is controlled by cytokinin-induced expression of SHORT HYPOCOTYL 2 (SHY2) in the so-called transition zone of the meristem, where SHY2 negatively regulates auxin response factors (ARFs) by protein-protein interaction. The resulting down-regulation of PIN-FORMED (PIN) auxin efflux carriers is considered the key event in promoting differentiation of meristematic cells. Here we show that this regulation involves additional, intermediary factors and is spatio-temporally constrained. We found that the described cytokinin-auxin crosstalk antagonizes BREVIS RADIX (BRX) activity in the developing protophloem. BRX is an auxin-responsive target of the prototypical ARF MONOPTEROS (MP), a key promoter of vascular development, and transiently enhances PIN3 expression to promote meristem growth in young roots. At later stages, cytokinin induction of SHY2 in the vascular transition zone restricts BRX expression to down-regulate PIN3 and thus limit meristem growth. Interestingly, proper SHY2 expression requires BRX, which could reflect feedback on the auxin responsiveness of SHY2 because BRX protein can directly interact with MP, likely acting as a cofactor. Thus, cross-regulatory antagonism between BRX and SHY2 could determine ARF activity in the protophloem. Our data suggest a model in which the regulatory interactions favor BRX expression in the early proximal meristem and SHY2 prevails because of supplementary cytokinin induction in the later distal meristem. The complex equilibrium of this regulatory module might represent a universal switch in the transition toward differentiation in various developmental contexts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphoinositide 3-kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here, we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85alpha, p55alpha, and p50alpha impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage-dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell-origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up-regulation of the transforming growth factor-beta co-receptor endoglin, and reduced levels of mature vascular endothelial growth factor-C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cystatin C (CstC) is a cysteine protease inhibitor of major clinical importance. Low concentration of serum CstC is linked to atherosclerosis. CstC can prevent formation of amyloid β associated with Alzheimer's disease and can itself form toxic aggregates. CstC regulates NO secretion by macrophages and is a TGF-β antagonist. Finally, the serum concentration of CstC is an indicator of kidney function. Yet, little is known about the regulation of CstC expression in vivo. In this study, we demonstrate that the transcription factor IFN regulatory factor 8 (IRF-8) is critical for CstC expression in primary dendritic cells. Only those cells with IRF-8 bound to the CstC gene promoter expressed high levels of the inhibitor. Secretion of IL-10 in response to inflammatory stimuli downregulated IRF-8 expression and consequently CstC synthesis in vivo. Furthermore, the serum concentration of CstC decreased in an IL-10-dependent manner in mice treated with the TLR9 agonist CpG. CstC synthesis is therefore more tightly regulated than hitherto recognized. The mechanisms involved in this regulation might be targeted to alter CstC production, with potential therapeutic value. Our results also indicate that caution should be exerted when using the concentration of serum CstC as an indicator of kidney function in conditions in which inflammation may alter CstC production.