107 resultados para LATTICE CLUSTER THEORY
Resumo:
Arising from M. A. Nowak, C. E. Tarnita & E. O. Wilson 466, 1057-1062 (2010); Nowak et al. reply. Nowak et al. argue that inclusive fitness theory has been of little value in explaining the natural world, and that it has led to negligible progress in explaining the evolution of eusociality. However, we believe that their arguments are based upon a misunderstanding of evolutionary theory and a misrepresentation of the empirical literature. We will focus our comments on three general issues.
Resumo:
The objective of this paper is to discuss whether children have a capacity for deonticreasoning that is irreducible to mentalizing. The results of two experiments point tothe existence of such non-mentalistic understanding and prediction of the behaviourof others. In Study 1, young children (3- and 4-year-olds) were told different versionsof classic false-belief tasks, some of which were modified by the introduction of a ruleor a regularity. When the task (a standard change of location task) included a rule, theperformance of 3-year-olds, who fail traditional false-belief tasks, significantly improved.In Study 2, 3-year-olds proved to be able to infer a rule from a social situation and touse it in order to predict the behaviour of a character involved in a modified versionof the false-belief task. These studies suggest that rules play a central role in the socialcognition of young children and that deontic reasoning might not necessarily involvemind reading.
Resumo:
The method of stochastic dynamic programming is widely used in ecology of behavior, but has some imperfections because of use of temporal limits. The authors presented an alternative approach based on the methods of the theory of restoration. Suggested method uses cumulative energy reserves per time unit as a criterium, that leads to stationary cycles in the area of states. This approach allows to study the optimal feeding by analytic methods.
Resumo:
Explicitly correlated coupled-cluster calculations of intermolecular interaction energies for the S22 benchmark set of Jurecka, Sponer, Cerny, and Hobza (Chem. Phys. Phys. Chem. 2006, 8, 1985) are presented. Results obtained with the recently proposed CCSD(T)-F12a method and augmented double-zeta basis sets are found to be in very close agreement with basis set extrapolated conventional CCSD(T) results. Furthermore, we propose a dispersion-weighted MP2 (DW-MP2) approximation that combines the good accuracy of MP2 for complexes with predominately electrostatic bonding and SCS-MP2 for dispersion-dominated ones. The MP2-F12 and SCS-MP2-F12 correlation energies are weighted by a switching function that depends on the relative HF and correlation contributions to the interaction energy. For the S22 set, this yields a mean absolute deviation of 0.2 kcal/mol from the CCSD(T)-F12a results. The method, which allows obtaining accurate results at low cost, is also tested for a number of dimers that are not in the training set.
Resumo:
A semisupervised support vector machine is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictions.
Resumo:
On the efficiency of recursive evaluations with applications to risk theoryCette thèse est composée de trois essais qui portent sur l'efficacité des évaluations récursives de la distribution du montant total des sinistres d'un portefeuille de polices d'assurance au cours d'un période donnée. Le calcul de sa fonction de probabilité ou de quantités liées à cette distribution apparaît fréquemment dans la plupart des domaines de la pratique actuarielle.C'est le cas notamment pour le calcul du capital de solvabilité en Suisse ou pour modéliser la perte d'une assurance vie au cours d'une année. Le principal problème des évaluations récursives est que la propagation des erreurs provenant de la représentation des nombres réels par l'ordinateur peut être désastreuse. Mais, le gain de temps qu'elles procurent en réduisant le nombre d'opérations arithmétiques est substantiel par rapport à d'autres méthodes.Dans le premier essai, nous utilisons certaines propriétés d'un outil informatique performant afin d'optimiser le temps de calcul tout en garantissant une certaine qualité dans les résultats par rapport à la propagation de ces erreurs au cours de l'évaluation.Dans le second essai, nous dérivons des expressions exactes et des bornes pour les erreurs qui se produisent dans les fonctions de distribution cumulatives d'un ordre donné lorsque celles-ci sont évaluées récursivement à partir d'une approximation de la transformée de De Pril associée. Ces fonctions cumulatives permettent de calculer directement certaines quantités essentielles comme les primes stop-loss.Finalement, dans le troisième essai, nous étudions la stabilité des évaluations récursives de ces fonctions cumulatives par rapport à la propagation des erreurs citées ci-dessus et déterminons la précision nécessaire dans la représentation des nombres réels afin de garantir des résultats satisfaisants. Cette précision dépend en grande partie de la transformée de De Pril associée.
Resumo:
Aim. To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host-plant as a case study. Location. The Alps. Methods. We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from the shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results. Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions. Species-specific interactions are scarce in alpine habitats because glacial cycles have limited opportunities for coevolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host-dependence of the beetle that locally limits the establishment of dispersing insects.
Resumo:
The present paper studies the probability of ruin of an insurer, if excess of loss reinsurance with reinstatements is applied. In the setting of the classical Cramer-Lundberg risk model, piecewise deterministic Markov processes are used to describe the free surplus process in this more general situation. It is shown that the finite-time ruin probability is both the solution of a partial integro-differential equation and the fixed point of a contractive integral operator. We exploit the latter representation to develop and implement a recursive algorithm for numerical approximation of the ruin probability that involves high-dimensional integration. Furthermore we study the behavior of the finite-time ruin probability under various levels of initial surplus and security loadings and compare the efficiency of the numerical algorithm with the computational alternative of stochastic simulation of the risk process. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
PURPOSE: The current study tested the applicability of Jessor's problem behavior theory (PBT) in national probability samples from Georgia and Switzerland. Comparisons focused on (1) the applicability of the problem behavior syndrome (PBS) in both developmental contexts, and (2) on the applicability of employing a set of theory-driven risk and protective factors in the prediction of problem behaviors. METHODS: School-based questionnaire data were collected from n = 18,239 adolescents in Georgia (n = 9499) and Switzerland (n = 8740) following the same protocol. Participants rated five measures of problem behaviors (alcohol and drug use, problems because of alcohol and drug use, and deviance), three risk factors (future uncertainty, depression, and stress), and three protective factors (family, peer, and school attachment). Final study samples included n = 9043 Georgian youth (mean age = 15.57; 58.8% females) and n = 8348 Swiss youth (mean age = 17.95; 48.5% females). Data analyses were completed using structural equation modeling, path analyses, and post hoc z-tests for comparisons of regression coefficients. RESULTS: Findings indicated that the PBS replicated in both samples, and that theory-driven risk and protective factors accounted for 13% and 10% in Georgian and Swiss samples, respectively in the PBS, net the effects by demographic variables. Follow-up z-tests provided evidence of some differences in the magnitude, but not direction, in five of six individual paths by country. CONCLUSION: PBT and the PBS find empirical support in these Eurasian and Western European samples; thus, Jessor's theory holds value and promise in understanding the etiology of adolescent problem behaviors outside of the United States.
Resumo:
A lot of research in cognition and decision making suffers from a lack of formalism. The quantum probability program could help to improve this situation, but we wonder whether it would provide even more added value if its presumed focus on outcome models were complemented by process models that are, ideally, informed by ecological analyses and integrated into cognitive architectures.
Resumo:
The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A distance-based discriminant algorithm and a robust multidimensional centroid estimate illustrate the theory, closely connected to the Gaussian kernels of Machine Learning.
Resumo:
Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice. Experimentally observed water molecules facing the IBS have been used in an attempt to validate these models. However, these trials have been hindered by the limited capability of X-ray crystallography to reliably identify all water molecules of the hydration layer. Due to the strong diffraction signal from both the oxygen and deuterium atoms, neutron diffraction provides a more effective way to determine the water molecule positions (as D(2) O). Here we report the successful structure determination at 293 K of fully perdeuterated type-III AFP by joint X-ray and neutron diffraction providing a very detailed description of the protein and its solvent structure. X-ray data were collected to a resolution of 1.05 Å, and neutron Laue data to a resolution of 1.85 Å with a "radically small" crystal volume of 0.13 mm(3). The identification of a tetrahedral water cluster in nuclear scattering density maps has allowed the reconstruction of the IBS-bound ice crystal primary prismatic face. Analysis of the interactions between the IBS and the bound ice crystal primary prismatic face indicates the role of the hydrophobic residues, which are found to bind inside the holes of the ice surface, thus explaining the specificity of AFPs for ice versus water.