On the Schoenberg transformations in data analysis: theory and illustrations
Data(s) |
2011
|
---|---|
Resumo |
The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A distance-based discriminant algorithm and a robust multidimensional centroid estimate illustrate the theory, closely connected to the Gaussian kernels of Machine Learning. |
Identificador |
http://serval.unil.ch/?id=serval:BIB_A642660C70E1 doi:10.1007/s00357-011-9092-x http://my.unil.ch/serval/document/BIB_A642660C70E1.pdf http://nbn-resolving.org/urn/resolver.pl?urn=urn:nbn:ch:serval-BIB_A642660C70E16 isbn:1432-1343 |
Idioma(s) |
en |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Journal of Classification, vol. 28, no. 3, pp. 297-314 |
Palavras-Chave | #Bernstein functions - Conditionally negative definite matrices - Discriminant analysis - Euclidean distances - Huygens principle - Isometric embedding - helix - Kernels - Menger curvature - Multidimensional scaling - Rectifiable curves - Robust centroids - Robust PCA |
Tipo |
info:eu-repo/semantics/article article |