On the Schoenberg transformations in data analysis: theory and illustrations


Autoria(s): Bavaud F.
Data(s)

2011

Resumo

The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A distance-based discriminant algorithm and a robust multidimensional centroid estimate illustrate the theory, closely connected to the Gaussian kernels of Machine Learning.

Identificador

http://serval.unil.ch/?id=serval:BIB_A642660C70E1

doi:10.1007/s00357-011-9092-x

http://my.unil.ch/serval/document/BIB_A642660C70E1.pdf

http://nbn-resolving.org/urn/resolver.pl?urn=urn:nbn:ch:serval-BIB_A642660C70E16

isbn:1432-1343

Idioma(s)

en

Direitos

info:eu-repo/semantics/openAccess

Fonte

Journal of Classification, vol. 28, no. 3, pp. 297-314

Palavras-Chave #Bernstein functions - Conditionally negative definite matrices - Discriminant analysis - Euclidean distances - Huygens principle - Isometric embedding - helix - Kernels - Menger curvature - Multidimensional scaling - Rectifiable curves - Robust centroids - Robust PCA
Tipo

info:eu-repo/semantics/article

article